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ABSTRACT

Modern field-programmable gate array (FPGA) devices often con-
tain complex clocking architectures to achieve high-performance
and flexible clock networks. The physical structure of these clock
networks, however, are pre-manufactured, unadjustable, and with
only limited routing resources. Most conventional FPGA placement
algorithms rarely consider clock feasibility, and therefore lead to
clock routing failures. Some recent works adopt simplified clock
routing models (e.g., the bounding box model) to force clock legal-
ity during placement, which, however, can often overestimate clock
routing demands and results in unnecessary placement quality degra-
dation. To address these limitations, in this paper, we propose a
generic FPGA placement framework that can simultaneously opti-
mize placement quality and ensure clock feasibility by explicit clock
tree construction. We demonstrate the effectiveness and efficiency of
the proposed approach using the ISPD 2017 Clock-Aware Placement
Contest benchmark suite. Compared with other state-of-the-art clock
legalization algorithms, the proposed approach can achieve the best
routed wirelength with competitive runtime.
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1 INTRODUCTION

In recent years, the drastically enhanced architecture and capacity
of Field Programmable Gate Array (FPGA) devices have led to the
rapid growth of customized hardware acceleration for modern ap-
plications, such as machine learning, cryptocurrency mining, and
high-frequency trading. However, this growing capability of FPGA
devices brings ever more challenges to FPGA CAD tools, especially
placement engines.

Figure 1 illustrates a representative column-based FPGA architec-
ture that has been widely adopted by many state-of-the-art commer-
cial FPGA devices [7] (e.g., Xilinx Virtex UltraScale and UltraScale+
series). In this specific architecture, each column provides one type
of logic resource among digital signal processor (DSP), random access
memory (RAM), I/O, and configurable logic block (CLB), where each
CLB site further consists of multiple lookup table (LUT) and flip-flop
(FF) slots. In a modern FPGA CAD flow, a design is first translated
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Figure 1: A representative column-based FPGA architecture

adopted in state-of-the-art Xilinx UltraScale and UltraScale+

series. This device is composed of 3 × 4 clock regions.

into a netlist composed of LUTs, FFs, and other heterogeneous blocks
(e.g., DSPs, RAMs, and I/Os) by logic synthesis and technology map-
ping. Then, a placement engine determines the physical locations
of all the cells in an FPGA layout shown in Fig. 1. Finally, routing is
conducted to realize the interconnects among these placed cells.

Given the significance of FPGA placement in determining the
overall implementation quality and efficiency, lots of research efforts
have been previously devoted to optimizing conventional metrics
like wirelength, routability, timing, and power [2, 3, 12, 13, 16, 18–
20, 22–24, 26]. However, there are still limited works in the literature
considering clock feasibility during placement. With the recent in-
crease in design complexity, there can be tens to even hundreds of
global clocks in a single FPGA design. Given the limited clock routing
resources on today’s FPGA devices, placement without careful clock
network planning can easily fail the whole implementation flow.

The clocking architecture of an FPGA device, as shown in Fig. 1,
typically consists of a grid of clock regions. One of the most im-
portant clocking constraints in such an architecture is that only a
limited number of clock networks can route through each clock re-
gion. This constraint is imposed by the pre-determined number of
pre-manufactured clock routing tracks in each clock region. Consid-
ering the clock loads (e.g., FFs, DSPs, and RAMs) of a clock network
can often scatter over a considerable portion of the FPGA device,
it is common for a clock network to span multiple clock regions.
Therefore, for clock-intensive designs, clock routing congestions can
be a headache, and techniques that are capable of ensuring clock
feasibility during placement becomes extremely imperative.

Several previous works have tentatively explored placement tech-
niques with the awareness of clock feasibility for FPGAs. In [10], a
cost function that penalizes high-clock-usage placements is proposed
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Figure 2: Illustration of the clock routing demand calcula-

tion using (a) the bounding box of clock loads (adopted in UT-

PlaceF 2.0 [14], NTUfplace [3], and RippleFPGA [21]) and (b)

the actual clock tree. Both figures show the same clock net-

work with the same load distribution. Shaded areas denote

the occupied clock regions. By using bounding box modeling

in (a), the clock networks occupies 9 clock regions, while the

actual clock tree only spans 6 clock regions in (b).

and integrated into the simulated annealing-basedVPR framework [2]
to produce clock-friendly solutions. In the more recent ISPD 2017
Clock-Aware Placement Contest [28] hold by Xilinx, the top-3 winners
UTPlaceF 2.0 [14], NTUfplace [3], and RippleFPGA [21] adopt a more
realistic commercial FPGA clocking architecture (similar to Fig. 1). In
these three works, to simplify the clock legalization problem, clock
routing of clock networks is approximated by the bounding boxes of
their clock loads. Figure 2(a) gives an example of this approximated
modeling. It shows the distribution of all the clock loads, including
CLBs, DSPs, and RAMs, in a clock network. By using the bounding
box modeling method, this clock network consumes clock routing
resources in all the clock regions overlapped with its bounding box
(shaded regions). However, we observe that this modeling method
often overestimates the actual clock routing demands. This can be
illustrated by Fig. 2(b). It shows the same clock loads distribution as
that in Fig. 2(a), but here, a clock tree (the bold black lines) is con-
structed to reveal the actual clock routing demands. Compared with
the bounding box estimation in Fig. 2(a), which consumes 9 clock
regions, the same clock network only spans 6 clock regions with tree
construction in Fig. 2(b). Apart from the clock routing modeling inac-
curacy, all these three works resolve clock routing congestions in a
greedy and iterative manner. Specifically, they repeatedly push clock
loads away from overflowed clock regions while greedily minimizing
the placement disturbance in each step. Such a method, however,
can only explore a very narrow solution space and always follows
the decisions made previously, which can lead to very suboptimal or
even infeasible solutions.

To remedy the aforementioned deficiencies in previous works, this
paper presents a generic framework that simultaneously optimizes
placement and ensures clock feasibility by explicit clock tree con-
struction. Inspired by the branch-and-bound idea [11], we generalize
the clock legalization as a tree-space exploration process. By doing
so, our framework can explore a larger solution space and poten-
tially produce better solutions compared with conventional greedy
approaches. Besides, a Lagrangian relaxation [4]-based clock tree
construction technique is also proposed to accurately reflect actual
clock routing demands. The major contributions of this paper are
highlighted as follows:
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Figure 3: Illustration of the targeting clocking architecture. (a)

A global view of 2 × 3 clock regions with R-layer (red) and

D-layer (blue). (b) A detailed view of HR/VR/HD/VD within a

single clock region. (c) The required routing pattern of a clock

net.

(1) Inspired by the branch-and-bound method, we interpret the
solution space of clock routing as a tree, and then generalize
the clock legalization as a tree exploration process of finding
legal solutions.

(2) We propose a novel Lagrangian relaxation-based clock tree
construction technique to accurately model the clock routing
demands during FPGA placement.

(3) We tentatively study different ways of constructing and ex-
ploring the solution-space tree, and evaluate their impact on
the overall quality of results and efficiency.

(4) We perform experiments on the ISPD 2017 Clock-Aware Place-
ment Contest [28] benchmark suite. Comparedwith other state-
of-the-art methods in the literature, the proposed approach
achieves the best overall routed wirelength with competitive
runtime.

The rest of this paper is organized as follows. Section 2 reviews
the targeting FPGA clocking architecture and gives the problem defi-
nition. Section 3 overviews our overall flow and details the proposed
algorithms. Section 4 shows the experimental results, followed by
the conclusion and future work in Section 5.

2 PRELIMINARIES

2.1 Clocking Architecture

Our targeting FPGA device is Xilinx UltraScale VU095, which was also
adopted in both ISPD 2016 and ISPD 2017 FPGA placement contests
[27, 28]. Its clocking architecture is illustrated in Fig. 3(a) – (c). The
global clocking architecture, as shown in Fig. 3(a), is physically a
two-level network composed of a clock routing layer (R-layer) and a
clock distribution layer (D-layer). To simplify the notations, in the
rest of this paper, we will denote the horizontal/vertical routing layer
as HR/VR, and the horizontal/vertical distribution layer as HD/VD.
In the targeting architecture, all of HR, VR, HD, and VD layers have
24 tracks running through each of the 5 × 8 clock regions. Figure 3(b)
gives a closer look within a single clock region. The connection
between HR and VR layers are bidirectional, while there are only
unidirectional connections from HR/VR to VD, and from VD to HD.
Given this architecture, a clock tree needs to follow the pattern shown
in Fig. 3(c). Specifically, it consists of two parts, a D-layer vertical
trunk tree connecting all the clock regions containing clock loads,
and an R-layer route connecting the clock source and the D-layer
trunk tree. More detailed clocking architecture can be found in [5].
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Figure 4: The proposed overall flow.

2.2 Problem Definition

In placement problem, routed wirelength is treated as one of the
most important quality metrics, since it is a good first-order approxi-
mation of overall performance (frequency) and power. Therefore, in
this work, our objective is to minimize the routed wirelength. Given
the clocking architecture (Section 2.1) and the optimization objec-
tive, we now define our simultaneous FPGA placement and clock tree
construction problem as follows.

Problem 1 (Simultaneous FPGA Placement and Clock Tree
Construction). Given an FPGA netlist, produce a placement with
minimized routed wirelength and a corresponding clock routing solution
that satisfies the targeting clocking architecture.

3 PROPOSED ALGORITHMS

3.1 Overview of the Proposed Flow

The proposed overall flow is shown in Fig. 4. Our framework is built
on top of a state-of-the-art academic FPGA placer presented in [15],
and it consists of three major phases: (1) wirelength-driven place-
ment, (2) clock-driven placement, and (3) legalization and detailed
placement.

Thewirelength-driven placement adopts themethodology of SimPL
[8]. In each iteration of this phase, a quadratic program is solved to
minimize the wirelength, and the rough legalization [8] technique is
conducted to eliminate cell overlapping. This loop is repeated until
the lower-bound wirelength and upper-bound wirelength ratio [8]
(LB-UB WL Ratio) converges to 0.9. In the clock-driven placement
phase, an extra clock network planning step is performed right af-
ter the conventional quadratic placement. It seeks to construct a
legal clock routing solution with minimized placement perturbation
(Section 3). After that, we assign cells to their feasible clock regions
induced from the resulting clock routing and conduct rough legaliza-
tion only within each clock region to preserve the clock legality. This
clock region-wise rough legalization updates the anchor forces [8]
of cells to point to their feasible locations found in the current place-
ment iteration and pull them to form a more clock-feasible solution in
the next iteration. The clock-driven placement phase stops when the
wirelength fully converges. Finally, legalization and detailed place-
ment are performed to further optimize the placement result while
honoring the previously achieved clock routing.

As the centerpiece of the proposed flow (Fig. 4), the clock net-
work planning step will be elaborated later in this paper. We first
define the clock network planning problem and give its mathemat-
ical formulation in Section 3.2. Then, in Section 3.3, we give an
intuitive explanation of a general mathematical method, the branch-
and-bound method, to solve a class of problems like this. We will
show that our proposed algorithms share a similar underlying idea
with the branch-and-bound method. The details of them are given in
Section 3.4 – 3.8.

3.2 The Clock Network Planning Problem

A well-optimized placement (in terms of conventional metrics, like
wirelength, power, and timing) can often fail the clock routing. For
such a case, the goal of our clock network planning is to find a clock-
feasible solution that greatly preserves the given optimized placement.
Therefore, our objective here is to minimize the total cell movement.
Meanwhile, the following two constraints also need to be satisfied:
(1) there should exist a legal clock routing solution, and (2) there
should not exist any logic resource overflows, that is, we should be
able to legalize all the cells with relatively small displacement. Given
the objective and constraints, we formally define the clock network
planning problem as follows.

Problem 2 (Clock Network Planning). Given an optimized
FPGA placement, find a movement-minimized cell-to-clock region as-
signment without logic resource overflow and a corresponding clock
routing solution satisfying the targeting clocking architecture.

Table 1: Notations Used in Clock Network Planning

V The set of cells.
§ The set of resource types, e.g., {LUT, FF, DSP, RAM}.
V(s ) The set of cells of resource type s ∈ §.
A(s )v The cell v ’s demand for resource type s ∈ §.
R The set of clock regions.

C (s )r The clock region r ’s capacity for resource type s ∈ §.
Dv ,r The physical distance between cell v and clock region r .
E The set of clock nets.

Given the notations defined in Table 1, Problem 2 can be written
as a binary optimization problem shown in Formulation (1). It is
optimized over binary variables xv ,r to minimize the objective (1a)
of total cell movement. If cell v is assigned to clock region r , then
xv ,r = 1, otherwise, xv ,r = 0. Constraint (1c) guarantees that each
cell is assigned to exactly one clock region. Constraint (1d) ensures
that the total demand of each resource type is no more than the
corresponding capacity in each clock region. Constraint (1e) requires
the existence of legal clock routing solutions with respect to the
assignment x . Here we do not list the closed-form expression of this
constraint, since it can be extremely complicated and impossible to
be tackled in practice.

minimize
x

∑
v ∈V

∑
r ∈R

Dv ,r · xv ,r , (1a)

subject to xv ,r ∈ {0, 1},∀v ∈ V,∀r ∈ R, (1b)∑
r ∈R

xv ,r = 1,∀v ∈ V, (1c)∑
v ∈V

A
(s)
v · xv ,r ≤ C

(s)
r ,∀r ∈ R,∀s ∈ §, (1d)

Exist a legal clock routing w.r.t x . (1e)
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Figure 5: Illustration of the branch-and-bound method. Each

circle denotes a solution and color intensity indicates its opti-
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3.3 Branch-and-Bound Method

A general algorithm to solve binary optimization problems, like
Formulation (1), is call branch-and-bound method [11]. It is a tree
traversal-based heuristic to search the very large solution space of
possible variable assignments. Its basic idea can be illustrated by
Fig. 5. In this example, we are trying to find the optimal solution
of a constrained minimization problem over a discrete (e.g., binary
and integral) space. Each circle here denotes a solution and the color
intensity indicates its optimality (in terms of minimizing the cost
without considering feasibility). Three feasible solutions are denoted
by stroked circles.

A general branch-and-bound algorithm starts with solving the
unconstrained problem P0, and its optimal solution typically is not
feasible, as in this example. In this case, by imposing different con-
straints, a branching procedure divides the solution space into several
sub-spaces (P1 and P2), and we continue to find the unconstrained
optimal solution in each of these sub-spaces. The same branching
procedure is progressively performed to each sub-problem until a
feasible solution is found (e.g., the solution of P3). Once a feasible
solution is reached, we can treat its cost as an upper-bound objective
value of the target minimization problem, and then, all the branches
with lower-bound objective values larger than it can be safely pruned
in the later exploration. Using Fig. 5 as an example, if we found the
first feasible solution in P3 with the objective value of Φ, then (1)
there is no need to further branch P3, since the optimal solution of
P3 is guaranteed to be no worse than any sub-problem of P3, and (2)
there is no need to explore branches (sub-spaces) with lower-bound
objective values larger than Φ, since solutions in them are guaranteed
to be sub-optimal.

The branch-and-bound method can explore a sufficiently large
solution space and find near-optimal solutions for various optimiza-
tion problems within a limited amount of time. Our proposed clock
network planning algorithm precisely borrows this idea. In the rest
of this paper, we will frequently link our proposed techniques to the
concepts introduced in this section for better explanation.

3.4 The Clock Network Planning Algorithm

Algorithm 1 gives our proposed clock network planning algorithm
to solve Formulation (1). Besides the inputs/outputs and notations
described in Problem 2 and Table 1, an extra input parameter N is

Algorithm 1: Clock Network Planning
Input :A placement with notations defined in Table 1. The

maximum number of legal solutions N.
Output :A movement-minimized cell-to-clock region

assignment without logic resource overflow, and a
corresponding legal clock routing solution.

1 (cost∗,x∗,γ ∗) ← (+∞, none, none);
2 n← 0;
3 κ
(0)
e ,r ← 1,∀e ∈ E,∀r ∈ R;

4 stack.push(κ(0));
5 while stack is not empty and n < N do

6 κ ← stack.pop();
7 Get the optimal cell-to-clock region assignment x (κ) and

its cost cost(κ) under constraint κ (Section 3.5);
8 if no feasible x (κ) exists then continue;
9 Get the clock routing solution γ (κ) corresponding to x (κ)

(Section 3.6);
10 if γ (κ) is overflow-free then
11 n← n + 1;
12 if cost(κ) < cost∗ then
13 (cost∗,x∗,γ ∗) ← (cost(κ),x (κ),γ (κ));
14 end

15 end

16 else if γ (κ) has routing overflow then

17 Derive a set of more strict constraints K ′ from κ

(Section 3.7);
18 Remove κ ′ ∈ K ′ that has lower-bound cost larger than

cost∗ (Section 3.8);
19 Push κ ′ ∈ K ′ into stack by their lower-bound costs

from high to low;
20 end

21 end

22 return (cost∗,x∗,γ ∗);

required for controlling the maximum number of feasible solutions
to explore. We set N to 10 in our framework.

In line 1 – 2, we initialize the best cell-to-clock region assignment
(x∗), its cost (cost∗), and the corresponding clock routing solution
(γ ∗) as invalid, and reset the number of feasible solutions n to 0.
In line 3, we construct an initial clock-assignment constraint κ(0).
For a clock-assignment constraint κ, each κe ,r is a binary value
that indicates whether cells in clock net e can be assigned to clock
region r . Similar to the branch-and-bound method starting with
an unconstrained problem (Section 3.3), we also do not consider
clock feasibility at the beginning and allow any cell-to-clock region
assignment. Therefore, all the entries in the initial clock-assignment
constraint κ(0) are set to 1 (line 3). To perform a tree traversal-based
exploration like the branch-and-bound method, we maintain a stack
to search the solution space in a depth-first order (DFS). The DFS
starts with the constraint κ(0) (line 4) and repeated in line 5 – 21 until
the stack becomes empty or enough number of feasible solutions are
found (n = N). During the DFS, various clock-assignment constraints
κ are branched from the constraint tree rooted at κ(0), just like the
branching procedure illustrated in Fig. 5. The best solution found
during this DFS exploration is returned in line 22 as the final result.

4



In each execution of line 5 – 21, we first fetch the clock-assignment
constraint κ on the top of the stack (line 6), then get the movement-
minimized cell-to-clock region assignment constrained by logic re-
sources and κ (line 7). This step can be interpreted as, within the
sub-spaceκ, finding the optimal solution x (κ) of Formulation (1) with-
out considering the clock constraint (1e). If no such x (κ) exists, this
branch will be discarded (line 8). Otherwise, we continue to evaluate
the clock feasibility of x (κ) by constructing a clock routing solu-
tion γ (κ) (line 9). If γ (κ) is routing overflow-free, (cost(κ),x (κ),γ (κ))
then forms a feasible solution, and we will update the best solution
(cost∗,x∗,γ ∗) if needed (line 10 – 15). If γ (κ) still has routing over-
flows, we will branch new clock-assignment constraints from κ to
encourage more clock-friendly solutions (line 17). These new con-
straints κ ′ ∈ K ′ can be interpreted as sub-spaces of κ, and some
previously allowed clock assignments in κ can be blocked in κ ′ ∈ K ′.
Among these newly derived constraints, we prune those that can
only lead to sub-optimal solutions (line 18), and push the remaining
into the stack in the descending order of their lower-bound costs
(line 19). By doing so, we always first explore the branch with the
minimum lower-bound cost at each constraint tree node.

The details of each core building block in Algorithm 1 will be
further elaborated in the later sections. Section 3.5 describes the
cell-to-clock region assignment in line 7. Section 3.6 presents the
clock routing in line 9. The clock-assignment constraint derivation
in line 17 and the lower-bound cost calculation in line 18 – 19 are
detailed in Section 3.7 and Section 3.8, respectively.

3.5 Minimum Cost Flow-Based

Cell-to-Clock Region Assignment

The cell-to-clock region assignment (line 7 in Algorithm 1) essentially
is solving the clock-unconstrained version of Formulation (1) within
the sub-space of a given clock-assignment constraint κ. It can be
written as a binary optimization problem shown in Formulation (2),
where E(v) denotes the set of clocks in cell v , binary value κe ,r indi-
cates whether cells in clock net e can be assigned to clock region r ,
and other notations are inherited from Table 1. Note that Formula-
tion (1) and Formulation (2) only differ by the clock constraints (1e)
and (2e).

minimize
x

∑
v ∈V

∑
r ∈R

Dv ,r · xv ,r , (2a)

subject to xv ,r ∈ {0, 1},∀v ∈ V,∀r ∈ R, (2b)∑
r ∈R

xv ,r = 1,∀v ∈ V, (2c)∑
v ∈V

A
(s)
v · xv ,r ≤ C

(s)
r ,∀r ∈ R,∀s ∈ §, (2d)

xv ,r = 0,∀(v, r ) ∈ {v ∈ V, r ∈ R |
∃e ∈ E(v) s.t. κe ,r = 0}. (2e)

The motivation of formulating Formulation (2) in this way is that
it can be approximately transformed into a set of minimum-cost flow
problems, each of which corresponds to a resource type (e.g., LUT,
FF, DSP, and RAM). Since the minimum-cost flow is a well-studied
problem, it can be efficiently solved by many mature algorithms [1].
Figure 6 gives a graph representation of the minimum-cost flow
corresponding to Formulation (2) with a single resource type. It is a
bipartite graph (regardless of the super source S and the super target

T ) with vertices for cells (v1,v2, . . . ,v |V |) on the left and vertices
for clock regions (r1, r2, . . . , r |V | ) on the right. We introduce an edge
between each pair of cell and clock region, but set its capacity to 0 if
the assignment is forbidden by the given constraint κ. With the edge
cost and capacity settings shown in Fig. 6, computing the minimum-
cost flow of amount Σv ∈VA

(s)
v on the graph can approximate the

optimal solution of Formulation (2).

S

v1

v2

v|V|

T

r1

r2

r|R|

..
.

..
.

0,
A
(s
)

v
0, C (s)r

Dv,r

A
(s)
v

,

{
0, ∃e ∈ E(v) s.t. κe,r = 0

∞, otherwise

Figure 6: A graph representation of the minimum-cost flow

for Formulation (2) with a single resource type. The pair of

numbers on each edge denotes the unit flow cost and the flow

capacity, respectively. For example, the edge between S andv1
has a unit flow cost of 0 and a flow capacity of A

(s)
v1 .

The sub-optimality comes from the fact that, in a minimum-cost
flow solution, a cell can be split and assigned tomultiple clock regions.
In such a case, we move all the “fragments” to the clock region
containing the largest one among them to realize an actual cell-to-
clock region assignment. In practice, the splitting only occurs in a
negligibly small portion of cells, thus the global optimality can still
be largely retained1. It is worthwhile to mention that, if the logic
resource demands of all cells for a given resource type s are the same
(i.e., A(s)i = A

(s)
j ,∀i, j ∈ V), the solution given by the minimum-cost

flow is also optimal for Formulation (2). This case is applicable to
resource types that only have one single cell type (e.g., DSP and CLB).

Aminimum-cost flow solution, however, cannot always be realized
as a complete cell-to-clock region assignment, even without cell
splitting. If the resulting flow amount is less than the amount of
flow being pushed (Σv ∈VA

(s)
v ), then not all the cells can be assigned

without logic resource overflow. This can happen in scenarios where
clock nets are over-constrained in too-small regions. In such a case, it
is guaranteed that no feasible solutions exist in the sub-space defined
by the given clock-assignment constraint κ, and thus we can safely
prune this branch as described in line 8 of Algorithm 1.

3.6 Clock Tree Construction

In this section, we will present the algorithm to construct a clock tree
solution for a given cell-to-clock region assignment. As introduced
in Section 2.1, a clock tree consists of a D-layer vertical trunk tree
that connects all clock loads and an R-layer route that connects the
D-layer trunk tree to the clock source. Since the routing patterns on
these two layers are very different, the routings on these two layers
are conducted separately in our framework. Since R-layer routing

1This post step might produce some negligible logic resource overflows. If the
logic resource constraint needs to be rigorously honored, slightly tighter logic resource
capacities can be applied to leave some margin for it.
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relies on the D-layer trunk location, we perform D-layer routing first,
then followed by R-layer routing.

(a) (b) (c)

Figure 7: Three different D-layer clock tree topologies of the

same clock load distribution on a 3 × 4 clock region grid.

Each of them is a vertical trunk tree with horizontal branches

connecting all the clock loads. Yellow shaded regions denote

clock regions containing clock loads of the given clock net.

3.6.1 Lagrangian Relaxation-Based D-Layer Clock Tree Construc-
tion. As shown in Fig. 7, given a cell-to-clock region assignment on a
clock region grid withm columns (m = 3 in Fig. 7), we can generate
m D-layer clock tree topologies for each clock by placing the vertical
trunk in different columns. Our goal here is to select exactly one clock
tree topology from them candidates for each clock such that there
are no VD and HD overflows. Meanwhile, a topology-dependent
objective (e.g., resource usage, clock skew, insertion delay, etc.) also
needs to be optimized.

If we denote the set ofm clock tree candidates of clock e (Fig. 7)
by T(e), denote the set of all clock tree candidates by T (i.e., T =⋃
e ∈E T(e)), denote the topology cost of clock tree candidate t by

ϕt , and use binary values Ht ,r /Vt ,r to represent whether clock tree
candidate t occupies an HD/VD track in clock region r , then the D-
layer clock tree construction problem can be mathematically written
as a binary optimization problem shown in Formulation (3).

minimize
x

∑
t ∈T

ϕt · zt , (3a)

subject to zt ∈ {0, 1},∀t ∈ T , (3b)∑
t ∈T(e)

zt = 1,∀e ∈ E, (3c)∑
t ∈T

Ht ,r · zt ≤ 24,∀r ∈ R, (3d)∑
t ∈T

Vt ,r · zt ≤ 24,∀r ∈ R. (3e)

Formulation (3) is optimized over binary variables zt to minimize
the objective of topology cost (3a). If the clock tree candidate t is
selected in the routing solution, then zt = 1, otherwise, zt = 0.
Constraint (3c) ensures that exactly one candidate is selected for each
clock net. Constraints (3d) and (3e) bound the HD/VD clock routing
usage in each clock region (24 is the number of available HD/VD
tracks in each clock region of our targeting device as described in
Section 2.1). In this work, since feasibility is the only consideration
for clock networks, we simply set the topology cost ϕt as the total
HD and VD demand of t . However, other metrics (e.g., clock skew)
can also be integrated in practice.

Although Formulation (3) can be optimally solved using integer
linear programming techniques, they are too computationally expen-
sive and unaffordable in our application. Therefore, we relax For-
mulation (3) to a much easier problem, as shown in Formulation (4).
Here, we remove the two clock resource constraints (3d) and (3e),
and add a set of Lagrangian multipliers [4] λt in the objective (4a).
Each λt can be interpreted as the routing-overflow penalty applied
to the clock tree candidate t , and we assign a larger value to it if t is
likely to run through congested regions. Then, by properly updating
these λt and iteratively solving Formulation (4), overflow-free or
overflow-minimized clock routing solutions can be achieved.

minimize
x

∑
t ∈T

(ϕt + λt ) · zt , (4a)

subject to zt ∈ {0, 1},∀t ∈ T , (4b)∑
t ∈T(e)

zt = 1,∀e ∈ E . (4c)

Algorithm 2 summarizes our Lagrangian relaxation-based D-layer
clock tree construction. In line 1 – 2, we create all the clock tree can-
didates T and initialize their penalties λ(0) to 0. In each Lagrangian
iteration (line 4 – 8), we first get the optimal solution z(i) of Formu-
lation (4) with λ(i) (line 5). Then, λ(i+1) can be derived from λ(i) by
penalizing clock tree candidates that run through overflowed clock
regions in the routing solution given by z(i) (line 6). This iteration is
repeated until one of the following holds: (1) a routing overflow-free
solution is found; (2) λ does not change anymore; (3) the maximum
iteration count Imax is reached; Finally, in line 9 – 10, we backtrace all
the explored solutions and return the one with the minimum routing
overflow as the final result.

The optimal solution of Formulation (4), as given in function
solveLR (line 11 – 18), can be efficiently obtained by picking the
candidate with the minimum ϕt + λt from each candidate pool T(e).
Function updateLR (line 19 – 37) presents our λ updating scheme. In
line 20 – 26, we first calculate the base penalty ∆λt for each candidate
t . As shown in line 24 – 25, for an overflowed clock region, we treat
its overflow value (OH /OV ) as the total amount of penalty and evenly
distribute the penalty to all the candidates running through it. After
that, in line 27 – 33, we calculate the minimum scaling factor α that
can change the optimal solution of Formulation (4) with α · ∆λ being
added to current λ. If such an α does not exist, λ are kept unchanged
(line 34). Otherwise, we add the extra penalty (1 + δ ) · α · ∆λ to λ(i)

(δ ≪ 1 is for tie-breaking) and return the result as λ(i+1) (line 35 – 36).

3.6.2 A∗ Search-Based R-Layer Clock Tree Routing. The R-layer
routing is responsible for connecting the clock source to the D-layer
trunk tree. Given a D-layer clock routing solution, the R-layer routing
is very similar to the conventional 2-pin net global routing problem.
The only difference is that, in each of these 2-pin nets, one of the
two “pins” is a vertical trunk (Section 2.1) instead of a single terminal.
Therefore, we extend the conventional A∗ search [6]-based routing
algorithm to treat all the clock regions occupied by the D-layer trunk
as legal endpoints. Besides, a rip-up and reroute technique similar
to [17] is also applied to iteratively resolve routing overflows.

3.7 Clock-Assignment Constraint Derivation

Recall that, in line 17 of Algorithm 1, for a given clock-assignment
constraint κ, if an overflow-free clock routing solution cannot be
found, we will derive a set of new constraints from κ to encourage
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Algorithm 2: Lagrangian Relaxation-Based D-layer
Clock Tree Construction
Input :A cell-to-clock region assignment x . The maximum

number of Lagrangian iterations Imax (default is 20).
Output :A D-layer routing solution with minimized routing

overflow and topology cost.

1 Create all clock tree candidates T for x (Fig. 7);
2 λ
(0)
t ← 0,∀t ∈ T ;

3 i← 0;
4 do

5 z(i) ← solveLR(λ(i)) // solve Formulation (4)
6 λ(i+1) ← updateLR(z(i), λ(i)) // update λ

7 i← i + 1;
8 while z(i) has overflow and λ(i) , λ(i−1) and i < Imax;
9 z∗ ← the z(i) with the minimum overflow;

10 return {t ∈ T | z∗t = 1};

11 Function solveLR(λ):
12 zt ← 0,∀t ∈ T ;
13 foreach e ∈ E do

14 t∗ ← the t ∈ T (e) with the minimum ϕt + λt ;
15 zt ∗ ← 1;
16 end

17 return z;
18 end

19 Function updateLR(z(i), λ(i)):
20 ∆λt ← 0,∀t ∈ T ;
21 foreach r ∈ R with HD/VD overflows of OH /OV do

22 TH (r ) ← {t ∈ T | Ht ,r = 1};
23 TV (r ) ← {t ∈ T | Vt ,r = 1};
24 foreach t ∈ TH (r ) do ∆λt ← ∆λt +

OH
|TH (r ) |

;

25 foreach t ∈ TV (r ) do ∆λt ← ∆λt +
OV
|TV (r ) |

;
26 end

27 α ←∞;
28 foreach e ∈ E do

29 t∗ ← the t ∈ T (e) being selected in iteration i;
30 foreach t ∈ T (e) that has ∆λt < ∆λt ∗ do

31 α ← min(α,
(ϕt+λt )−(ϕt∗+λt∗ )

∆λt∗−∆λt
);

32 end

33 end

34 if α = ∞ then return λ(i);
35 λ

(i+1)
t ← λ

(i)
t + (1 + δ ) · α · ∆λt ,∀t ∈ T ;

36 return λ(i+1);
37 end

more clock-friendly solutions. In this section, we will detail this clock-
assignment constraint derivation process. Since, in practice, R-layer
routing is much less congested than D-layer routing and rarely fails,
we will only discuss constraint derivation methods for resolving
D-layer congestions. However, similar ideas are also applicable to
R-layer routing.

3.7.1 Constraint Derivation for VD Overflows. Algorithm 3 sum-
marizes our constraint deviation scheme for resolving VD overflows.

Algorithm 3: Clock-Assignment Constraint Deriva-
tion for VD Overflows
Input :A clock-assignment constraint κ and its clock

routing solution γ .
Output :A set of new clock-assignment constraints K ′

derived from κ that can potentially alleviate the
VD-overflow.

1 r ← the clock region with the most VD overflow in γ ;
2 K ′ ← ∅;
3 foreach e ∈ E that occupies VD resource in r do
4 foreach blockage B in Fig. 8 do
5 κ ′ ← κ;
6 κ ′e ,b ← 0,∀b ∈ B;
7 K ′ ← K ′ ∪ κ ′;
8 end

9 end

10 return K ′;

We first get the clock region r with the most VD overflow (line 1).
Then, for each clock that occupies VD resource in r , we generate
placement blockages in four directions, as shown in Fig 8, that can
potentially alleviate the congestion in r . Finally, we impose each of
these blockages on top of the current clock-assignment constraint κ
to form a set of new constraints K ′ (line 3 – 9). If there are q clock
nets occupying VD resource in r , there will be 4q new constraints
in K ′, and each κ ′ ∈ K ′ represent a sub-space of κ as described in
Section 3.4.

(a) (b) (c) (d)

Figure 8: Four half-plane-based clock-assignment blockages

(hatched/solid red regions) that are in the (a) south, (b) north,

(c) west, and (d) east of a VD-overflowed clock region (solid

red region).

3.7.2 Constraint Derivation for HD Overflows. Our constraint
derivation for HD overflow is similar to that for VD, as described
in Section 3.7.1 and Algorithm 3. However, given the fact that HD
branches affect the tree topology much more locally than VD trunks,
blockages of granularities finer than Fig. 8 might be able to achieve
even better results. For example, the corner-based (Fig. 9) and the
row-based (Fig. 10) blockages can potentially resolve the overflow
with less cell movement compared with the blockages shown in Fig. 8.
Surprisingly, as will be shown in Section 4.3, the blockage schemes
in Fig. 9 and Fig. 10 cannot outperform that in Fig. 8 within a limited
amount of time in our experiments. This might be because the block-
ages in Fig. 9 and Fig. 10 tend to cut the placeable region of each
clock into non-convex and unconnected fragments, which signifi-
cantly slow down the convergence of Algorithm 1. While using the
blockages in Fig. 8, the placeable region of each clock is guaranteed
to be a rectangle.
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It is still an open question to find the best constraint derivation
scheme, but we can see that our framework is generic and any other
constraint derivation methods can also be easily integrated.

(a) (b) (c) (d)

Figure 9: Corner-based clock-assignment blockages for an

HD-overflowed clock region.

(a) (b) (c)

Figure 10: Row-based clock-assignment blockages for an HD-

overflowed clock region.

3.8 Lower-Bound Cost Calculation

In this section, we introduce a method to calculate the lower-bound
cost of Formulation (2) for a given clock-assignment constraint. This
lower-bound cost is essential for: (1) the solution pruning in line 18 of
Algorithm 1, and (2) the constraint sorting in line 19 of Algorithm 1. A
good lower-bound cost should be: (1) as tight as possible to reflect the
actual cost; (2) cheap to calculate, as it will be evaluated much more
frequently than the actual cost calculation (solving Formulation (2)).
Given these requirements, we propose the following lower-bound
cost for a given clock-assignment constraint κ:

costLB(κ) =
∑
v ∈V

min
{r ∈R |κe ,r=1,∀e ∈E(v)}

Dv ,r , (5)

where E(v) denotes the set of clock nets incident to cellv . Equation (5)
can be proved as a lower-bound cost of Formulation (2), since it is
the optimal solution of Formulation (2) without considering the logic
resource constraint (2d). Moreover, its time complexity is only linear
to the number of cells in the design, which is very computation-
efficient.

4 EXPERIMENTAL RESULTS

We implemented the proposed techniques in C++ based on the place-
ment framework in [15] and performed the experiments on a Linux
machine running with Intel Core i9-7900X CPUs (3.30 GHz and 10
cores) and 128 GB RAM. The ISPD 2017 clock-aware FPGA placement
contest benchmark suite [28] released by Xilinx is used to demon-
strate the effectiveness of the proposed approach. Routed wirelength
reported by Xilinx Vivado v2016.4 [25] is used to evaluate the place-
ment quality.

Table 2 lists the characteristics of the ISPD 2017 benchmark suite.
To further demonstrate the effectiveness of the proposed approach,

we also performed experiments under more strict clock constraints.
Specifically, besides using all of the 24 clock routing tracks, we also
conducted experiments that only utilize up to 12, 8, 7, 6, and 5 clock
routing tracks in each clock region. In the rest of this section, they
will be denoted as “Clock Capacity (CC) = 24/12/8/7/6/5”.

The wirelength optimization kernels (global/detailed placement
and legalization) of our placer are carefully parallelized. Therefore, we
enabled 10 threads for them in our experiments, but the techniques
proposed in this paper are all executed with only a single thread.

Table 2: ISPD 2017 Contest Benchmarks Statistics

Designs #LUT #FF #RAM #DSP #Clock
CLK-FPGA01 211K 324K 164 75 32
CLK-FPGA02 230K 280K 236 112 35
CLK-FPGA03 410K 481K 850 395 57
CLK-FPGA04 309K 372K 467 224 44
CLK-FPGA05 393K 469K 798 150 56
CLK-FPGA06 425K 511K 872 420 58
CLK-FPGA07 254K 309K 313 149 38
CLK-FPGA08 212K 257K 161 75 32
CLK-FPGA09 231K 358K 236 112 35
CLK-FPGA10 327K 506K 542 255 47
CLK-FPGA11 300K 468K 454 224 44
CLK-FPGA12 277K 430K 389 187 41
CLK-FPGA13 339K 405K 570 262 47
Resources 538K 1075K 1728 768 -

4.1 Comparison with Other State-of-the-Art

Placers

Table 3 compares our results with other state-of-the-art academic
clock-aware placers, including UTPlaceF 2.0 [14], NTUfplace [9], Rip-
pleFPGA [21], and [15]. Among them, UTPlaceF 2.0, NTUfplace, and
RippleFPGA are extensions of the top-3 winners of the ISPD 2017
Clock-Aware Placement Contest. Metrics “WL” and “RT” represent
the routed wirelength and runtime, while “WLR” and “RTR” repre-
sent the wirelength and runtime ratios normalized to the proposed
approach.

All the results of other placers are from their original publications.
Since we are not able to get their results under different CC values,
this comparison is only based on the default clock capacity CC =
24. In this comparison, UTPlaceF 2.0, NTUfplace, and RippleFPGA
are single-threaded, while [15] and our placer are executed with
16 and 10 threads, respectively. The runtime result of NTUfplace
in Table 3 is the total runtime of placement and routing, since the
original publication did not report the placement runtime alone.

Due to the differences in machines, experiment setups, and base-
line placement algorithms, Table 3 is not an apple-to-apple compar-
ison from the clock legalization perspective. However, we still can
see that our placer achieved the best overall routed wirelength with
very competitive efficiency.

4.2 Comparison with a State-of-the-Art Method

To further demonstrate the effectiveness of our approach in a fair
way, we implemented a state-of-the-art clock legalization method
UTPlaceF 2.0 [14] (it is also the 1st-place winner of the ISPD 2017
Clock-Aware Placement Contest) and replaced the proposed algo-
rithms in our placer with it. This new placer is denoted as [14]-Impl.
Since [14]-Impl and our placer only differ by the clock legalization
approaches, the noises from parts that are irrelevant to this work
(e.g., global/detailed placement) can be completely decoupled.
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Table 4 compares the proposed approach with [14]-Impl. It can
be seen that the proposed approach achieves similar results com-
pared with [14]-Impl under relatively loose clock constraints (CC =
24/12). As the clock capacity reduces, the proposed approach starts
to outperform [14]-Impl in both routed wirelength and runtime. On
average, with CC = 8/7/6/5, [14]-Impl suffers 1.1%/2.3%/13.1%/30.4%
wirelength degradation, while runs ×1.21/×1.40/×1.67/×2.19 slower
compared with the baseline (the proposed approach with CC = 24).
However, by using the proposed approach, the routed wirelength
only degrades by 0.6%/1.2%/2.3%/17.6% with only 7%/10%/17%/24%
runtime increase. Furthermore, in the extremely challenging case
of CC = 5, our approach can find feasible solutions for 9 out of 13
designs within a runtime limit (1800 seconds), while only 6 designs
can be successfully placed using [14]-Impl. Therefore, our approach
is especially effective for cases with high clock utilization.

4.3 Comparison of Different Clock-Assignment

Blockage Schemes

Table 5 compares the three clock-assignment blockage schemes de-
scribed in Section 3.7: (1) half-plane-based blockages (Fig. 8), (2)
corner-based blockages (Fig. 9), and (3) row-based blockages (Fig. 10).
Surprisingly, more fine-grained blockage schemes lead to worse qual-
ity and runtime in our experiments. In the very challenging case of
CC = 6, the half-plane-based scheme outperforms the corner-based
and the row-based schemes by 9.0% and 24.4%, respectively, in routed
wirelength. Meanwhile, it also runs ×1.08 and ×1.33 faster than them.
Moreover, the corner-based and the row-based schemes failed to find
feasible solutions for 1 and 4 designs, respectively, within the runtime
limit of 1800 seconds, while the half-plane-based scheme can achieve
feasible solutions for all 13 designs.

We observed that the two fine-grained schemes often split the fea-
sible region of each clock into separated and non-convex fragments,
which can significantly worsen the convergence of the algorithm and
results in poor solution quality or even infeasible solution within
a limited amount of time. It is still an open question to find block-
age schemes better than the half-plane one (Fig. 8), but preserving
the continuity and convexity of feasible regions should play a very
important role here.

4.4 Branch-and-Bound Tree Exploration

Figure 11 visualizes the lower-bound costs (Eq. (5)) and the actual
costs (Formulation (2)) of the first 30 feasible solutions found in a
branch-and-bound tree exploration of CLK-FPGA01 with CC = 6. We
can observe that our lower-bound cost estimation is highly correlated
with the actual cost. Therefore, even if we greedily pick the branch
with the minimum lower-bound cost at each step, a relatively good
solution can still be obtained, which is the first feasible solution
shown in Fig. 11. However, due to the non-convexity of the clock
network planning problem, the first solution is in general not the
optimum. In this example, there are 7 solutions (in the first 30 feasible
solutions) having less actual costs than the first solution (the solution
obtained by the greedy approach). The best among them is achieved
at number 27, which is about 4% better than the first solution.

5 CONCLUSION AND FUTUREWORK

In this paper, we have proposed a generic FPGA placement framework
that simultaneously optimizes placement quality and ensures clock
feasibility by explicit clock tree construction. The proposed frame-
work significantly reduces the placement quality degradation while
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Figure 11: The lower-bound and actual costs of the first 30

feasible solutions found in a branch-and-bound procedure of

CLK-FPGA01 with CC = 6.

honoring the clock feasibility for designs with high clock utilization.
To realize the proposed framework, a branch-and-bound-inspired
clock network planning algorithm and a Lagrangian relaxation-based
clock tree construction technique are proposed. Our experiments on
ISPD 2017 benchmark suite demonstrate that the proposed approach
outperforms other state-of-the-art approaches in routed wirelength
with competitive runtime. In the future, we plan to further explore
different branch-and-bound strategies and parallelize the tree explo-
ration process.
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Table 3: Routed Wirelength (×103) and Runtime (Seconds) Comparison with Other State-of-the-Art Placers (CC = 24)

Designs UTPlaceF 2.0 [14] NTUfplace [9] RippleFPGA [21] [15] Proposed
WL RT WLR RTR WL RT† WLR RTR† WL RT WLR RTR WL RT WLR RTR WL RT WLR RTR

CLK-FPGA01 2208 422 1.056 2.34 2098 3524 1.003 19.58 2011 288 0.962 1.60 2101 476 1.004 2.64 2092 180 1.000 1.00
CLK-FPGA02 2279 407 1.039 2.27 2173 3351 0.991 18.72 2168 266 0.988 1.49 2263 454 1.032 2.54 2194 179 1.000 1.00
CLK-FPGA03 5353 824 1.048 2.40 5049 6722 0.988 19.60 5265 583 1.031 1.70 5181 930 1.014 2.71 5109 343 1.000 1.00
CLK-FPGA04 3698 564 1.027 2.33 3710 5101 1.030 21.08 3607 380 1.002 1.57 3654 656 1.015 2.71 3600 242 1.000 1.00
CLK-FPGA05 4692 744 1.030 2.30 4523 6336 0.993 19.62 4660 569 1.023 1.76 4589 846 1.007 2.62 4556 323 1.000 1.00
CLK-FPGA06 5589 845 1.029 2.44 5169 7932 0.952 22.93 5737 591 1.056 1.71 5375 963 0.989 2.78 5432 346 1.000 1.00
CLK-FPGA07 2445 670 1.052 3.33 2380 4071 1.024 20.25 2326 304 1.001 1.51 2448 515 1.053 2.56 2324 201 1.000 1.00
CLK-FPGA08 1886 419 1.044 2.48 1843 3109 1.020 18.40 1778 247 0.984 1.46 1829 436 1.012 2.58 1807 169 1.000 1.00
CLK-FPGA09 2597 668 1.036 3.39 2499 4423 0.997 22.45 2530 327 1.009 1.66 2556 523 1.019 2.66 2507 197 1.000 1.00
CLK-FPGA10 4464 772 1.056 2.70 4294 6569 1.015 22.97 4496 512 1.063 1.79 4255 801 1.006 2.80 4229 286 1.000 1.00
CLK-FPGA11 4184 847 1.063 3.20 4031 6538 1.024 24.67 4190 455 1.064 1.72 4014 679 1.020 2.56 3936 265 1.000 1.00
CLK-FPGA12 3369 614 1.041 2.49 3244 5300 1.002 21.46 3388 409 1.047 1.66 3253 647 1.005 2.62 3236 247 1.000 1.00
CLK-FPGA13 3848 929 1.033 3.44 3818 5639 1.025 20.89 3833 441 1.029 1.63 3731 743 1.002 2.75 3723 270 1.000 1.00

Norm. - - 1.043 2.70 - - 1.005 20.97 - - 1.020 1.64 - - 1.014 2.66 - - 1.000 1.00
†: [9] only reports the total runtime of placement and routing, so the RT and RTR here are just for reference.

Table 4: Normalized Wirelength and Runtime Comparison with [14]-Impl Under Different Clock Capacities (CC)

Designs
CC = 24 CC = 12 CC = 8 CC = 7 CC = 6 CC = 5

[14]-Impl Proposed [14]-Impl Proposed [14]-Impl Proposed [14]-Impl Proposed [14]-Impl Proposed [14]-Impl Proposed
WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR

CLK-FPGA01 1.002 0.99 1.000 1.00 1.003 1.01 1.003 1.03 1.013 1.28 1.011 1.09 1.011 1.40 1.019 1.13 1.024 1.45 1.029 1.19 1.066 1.67 1.031 1.18
CLK-FPGA02 1.000 0.99 1.000 1.00 1.000 1.01 1.000 0.99 1.005 1.05 1.004 1.03 1.015 1.26 1.012 1.06 1.211 1.49 1.024 1.13 1.299 2.25 1.061 1.14
CLK-FPGA03 1.001 1.00 1.000 1.00 1.002 1.06 1.001 1.04 1.022 1.18 1.008 1.12 1.043 1.59 1.013 1.10 1.444 2.22 1.023 1.23 ∗ - ∗ -
CLK-FPGA04 0.999 0.99 1.000 1.00 1.001 1.02 1.000 1.03 1.013 1.15 1.005 1.07 1.014 1.17 1.009 1.12 1.056 1.74 1.013 1.13 1.563 3.33 1.175 1.24
CLK-FPGA05 1.000 0.99 1.000 1.00 1.000 1.05 1.001 1.04 1.007 1.33 1.004 1.10 1.021 1.52 1.009 1.13 1.059 1.70 1.032 1.24 ∗ - ∗ -
CLK-FPGA06 1.000 1.02 1.000 1.00 1.004 1.09 1.000 1.07 1.026 1.62 1.009 1.15 1.031 1.67 1.016 1.17 1.181 2.02 1.024 1.27 ∗ - ∗ -
CLK-FPGA07 1.001 1.00 1.000 1.00 0.999 1.03 0.999 1.04 1.014 1.28 1.009 1.07 1.058 1.43 1.015 1.14 1.354 1.70 1.046 1.20 1.417 2.56 ∗ -
CLK-FPGA08 1.000 0.96 1.000 1.00 1.001 0.98 1.001 1.02 1.016 1.17 1.010 1.05 1.024 1.33 1.017 1.07 1.086 1.50 1.021 1.13 1.121 1.69 1.052 1.14
CLK-FPGA09 0.998 1.00 1.000 1.00 1.000 1.03 1.000 1.01 1.002 1.07 1.003 1.02 1.011 1.24 1.008 1.06 1.013 1.42 1.011 1.11 1.358 1.62 1.045 1.19
CLK-FPGA10 0.999 1.00 1.000 1.00 1.000 1.05 0.999 1.04 1.012 1.42 1.005 1.05 1.015 1.58 1.009 1.11 1.040 1.46 1.019 1.17 ∗ - 1.323 1.25
CLK-FPGA11 0.999 0.99 1.000 1.00 0.999 1.02 1.000 1.03 1.006 1.05 1.003 1.05 1.017 1.46 1.011 1.08 1.030 1.73 1.017 1.13 ∗ - 1.511 1.56
CLK-FPGA12 0.999 0.99 1.000 1.00 0.999 1.00 1.000 1.01 1.007 1.07 1.003 1.02 1.014 1.14 1.009 1.08 1.019 1.68 1.017 1.11 ∗ - 1.321 1.19
CLK-FPGA13 1.000 0.99 1.000 1.00 1.000 1.00 1.001 1.02 1.006 1.12 1.004 1.02 1.028 1.37 1.013 1.05 1.192 1.65 1.026 1.12 ∗ - 1.070 1.20

Norm. 1.000 0.99 1.000 1.00 1.001 1.03 1.000 1.03 1.011 1.21 1.006 1.07 1.023 1.40 1.012 1.10 1.131 1.67 1.023 1.17 1.304 2.19 1.176 1.24
∗: Fail to find feasible placement solutions within 1800 seconds.

Table 5: Normalized Wirelength and Runtime Comparison of Different Clock-Assignment Blockage Schemes

Designs
CC = 24 CC = 12 CC = 8 CC = 6

Half-Plane Corner Row Half-Plane Corner Row Half-Plane Corner Row Half-Plane Corner Row
WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR WLR RTR

CLK-FPGA01 1.000 1.00 1.000 0.99 1.000 1.00 1.003 1.03 1.002 1.07 1.003 1.05 1.011 1.09 1.009 1.14 1.019 1.18 1.029 1.19 1.020 1.18 1.205 1.31
CLK-FPGA02 1.000 1.00 1.000 1.01 1.000 1.00 1.000 0.99 1.001 1.01 1.001 1.00 1.004 1.03 1.002 1.05 1.002 1.04 1.024 1.13 1.261 1.28 1.162 1.26
CLK-FPGA03 1.000 1.00 1.000 1.03 1.000 1.01 1.001 1.04 1.001 1.14 1.000 1.20 1.008 1.12 1.004 1.18 1.007 1.30 1.023 1.23 1.090 1.41 ∗ -
CLK-FPGA04 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.03 1.000 1.06 1.000 1.07 1.005 1.07 1.004 1.10 1.006 1.13 1.013 1.13 1.047 1.15 1.271 1.52
CLK-FPGA05 1.000 1.00 1.000 1.00 1.000 1.00 1.001 1.04 1.000 1.08 1.000 1.14 1.004 1.10 1.003 1.15 1.006 1.18 1.032 1.24 1.134 1.34 ∗ -
CLK-FPGA06 1.000 1.00 1.000 1.02 1.000 1.01 1.000 1.07 1.000 1.12 1.001 1.29 1.009 1.15 1.006 1.20 1.033 1.50 1.024 1.27 ∗ - ∗ -
CLK-FPGA07 1.000 1.00 1.000 1.00 1.000 1.00 0.999 1.04 0.999 1.03 1.000 1.03 1.009 1.07 1.018 1.14 1.019 1.16 1.046 1.20 1.260 1.24 1.380 1.70
CLK-FPGA08 1.000 1.00 1.000 1.00 1.000 1.00 1.001 1.02 1.001 0.99 1.000 1.03 1.010 1.05 1.014 1.05 1.025 1.10 1.021 1.13 1.028 1.18 1.101 1.27
CLK-FPGA09 1.000 1.00 1.000 1.00 1.000 1.01 1.000 1.01 1.000 1.03 1.000 1.03 1.003 1.02 1.000 1.06 1.002 1.08 1.011 1.11 1.044 1.20 1.066 1.26
CLK-FPGA10 1.000 1.00 1.000 1.01 1.000 1.00 0.999 1.04 1.002 1.08 1.000 1.09 1.005 1.05 1.025 1.23 1.038 1.35 1.019 1.17 1.080 1.40 1.749 2.68
CLK-FPGA11 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.03 1.000 1.06 1.000 1.07 1.003 1.05 1.001 1.10 1.001 1.13 1.017 1.13 1.041 1.21 1.333 1.77
CLK-FPGA12 1.000 1.00 1.000 0.99 1.000 1.00 1.000 1.01 1.001 1.00 1.000 1.03 1.003 1.02 1.013 1.14 1.014 1.14 1.017 1.11 1.213 1.28 1.138 1.28
CLK-FPGA13 1.000 1.00 1.000 1.00 1.000 0.99 1.001 1.02 1.000 1.03 1.000 1.04 1.004 1.02 1.013 1.11 1.013 1.07 1.026 1.12 1.146 1.28 ∗ -

Norm. 1.000 1.00 1.000 1.00 1.000 1.00 1.000 1.03 1.000 1.05 1.000 1.08 1.006 1.07 1.009 1.13 1.014 1.18 1.023 1.17 1.113 1.26 1.267 1.56
∗: Fail to find feasible placement solutions within 1800 seconds.
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