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Modern FPGA Applications
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Placement for Modern FPGAs

Input A netlist of cells (LUT, FF, DSP, RAM, . . . )

Output Cell physical locations in the FPGA layout

Objectives Wirelength, timing, power, routability, . . .

Constraints CLB clustering rules, . . .
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Modern FPGA Placement Challenges

CLB DSP RAM I/O
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Highly Heterogeneous
I Convert heterogeneous netlists to homogeneous ones by clustering, [Betz, FPL’97]
I Homogeneous placement with heuristics, [Chen+, TCAD’18], [Abuowaimer+, TODAES’18]
I Handle a single cell type at a time, [Darav+, FPGA’19]

Highly Discrete
I Handle highly discrete cells separately, [Li+, TCAD’18], [Chen+, TCAD’18]
I Add extra cost to objective functions, [Chen+, ICCAD’14], [Kuo+, ICCAD’17]

Downstream Clustering Dependent
I Adjust cell area based on a local clustering estimation, [Li+, TCAD’19]
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Our Contributions

elfPlace: a general, flat, nonlinear placement algorithm for large-scale heterogeneous
FPGAs

I We extend the ePlace algorithm [Lu+, TCAD’15] for ASICs to deal with heterogeneity and
discreteness issues in FPGAs in a unified manner

I We improve the numeric optimization formulation and preconditioning approahces in ePlace
for FPGAs

I We propose a normalized subgradient method to spread heterogeneous cell types in a
self-adaptive manner.

I We improve the clustering-aware area adjustment technique in [Li+, TCAD’19] and integrate it,
together with routability and pin density optimizations.

I We demonstrate more than 7% improvement in routed wirelength, on ISPD 2016 benchmark
suite, over 4 cutting-edge placers with very competitive runtime.
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Weighted-Average (WA) Wirelength Model

Weighted-average (WA) wirelength model approximates half-perimeter wirelength (HPWL),

W(x, y) =
∑
e∈E

We(x, y) =
∑
e∈E

(
max
i,j∈e
|xi − xj|+ max

i,j∈e
|yi − yj|

)
,

using soft min/max functions,

W̃ex (x, y) =

∑
i∈e xi exp(xi/γ)∑

i∈e exp(xi/γ)
−
∑

i∈e xi exp(−xi/γ)∑
i∈e exp(−xi/γ)

.
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Electrostatics-Based Density Model

Analogy between placement and electrostatic system, ePlace [Lu+,TCAD’15]

Placement

Cell

Site

Utilization

Utilization Penalty

Utilization Gradient

Electrostatic System

Positive Charge

Fixed Negative Charge

Charge Density

Electric Potential Energy

Electric Field

q

ρ

Φ

ξ
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Electrostatics-Based Density Model

Poisson’s equation of the electrostatic system
∇ · ∇ψ(x, y) = −ρ(x, y), (x, y) ∈ R,

n̂ · ∇ψ(x, y) = 0, (x, y) ∈ ∂R,
x

R

ρ(x, y) =
x

R

ψ(x, y) = 0, (x, y) ∈ R.

The numerical solution using spectral method

au,v =
1

m2

m−1∑

x=0

m−1∑

y=0

ρ(x, y) cos (ωux) cos (ωvy),

ψ(x, y) =
m−1∑

u=0

m−1∑

v=0

au,v

ω2
u + ω2

v
cos (ωux) cos (ωvy),

ξx(x, y) =
m−1∑

u=0

m−1∑

v=0

au,vωu

ω2
u + ω2

v
sin (ωux) cos (ωvy),

ξy(x, y) =
m−1∑

u=0

m−1∑

v=0

au,vωv

ω2
u + ω2

v
cos (ωux) sin (ωvy).

8 × 8 2D-DCT
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Problem Formulation
Each resource type has a separate electrostatic system

min
x,y

W̃(x, y) s.t. Φs(x, y) = 0,∀s ∈ S = {LUT, FF, DSP, RAM}.

Relax the constraints using Augmented Lagrangian Method (ALM)

min
x,y

f (x, y) = W̃(x, y) +
∑
s∈S

λs

(
Φs(x, y) +

cs

2
Φs(x, y)2

)
.
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Initial Placement
Randomly place physical instances by

(X, Y) ∼ N
(1

2

[
WR

HR

]
, 10−3

[
WR 0
0 HR

])
Create fillers to achieve charge neutrality and randomly place them by

(X, Y) ∼ Resource Distribution
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Density Weight Initialization
Initialize λ based on the wirelength and energy gradient norm ratio

λ(0) = η
‖∇W̃(0)‖1∑

s∈S ‖∇Φ
(0)
s ‖1

(
1, 1, · · · , 1

)T
.
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Gradient Computation
Gradient ∇f of the ALM-based formulation

∂f
∂xi

=
∂W̃
∂xi

+ λs

(∂Φs

∂xi
+ csΦs

∂Φs

∂xi

)
=
∂W̃
∂xi
− λsqiξxi

(
1 + csΦs

)
, ∀i ∈ Vs.
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Preconditioning

Precondition ∇f by H−1
f ∇f , where Hf is a diagonal matrix with each diagonal entry defined

as
∂2W̃
∂x2

i
∼ hxi = max

(∑
e∈Ei

1
|e| − 1

+ λsqi, 1
)
, ∀i ∈ Vs, ∀s ∈ S.

Update placement along −H−1
f ∇f by Nesterov’s method, ePlace [Lu+, TCAD’15]
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Density Weight Updating
Update λ using normalized subgradient method

∇̂subλ
(k) =

(
· · · , 1

Φ
(0)
s

(
Φ(k)

s +
cs

2
Φ(k)

s
2
)
, · · ·

)T
.

λ(k+1) = λ(k) + t(k) ∇̂subλ
(k)

‖∇̂subλ(k)‖2
.

Rand. Initial
Placement

Rand. Filler
Insertion

λ Initial-
ization

Gradient
Computation

Nesterov’s
Optimization

λ Update

DSP/RAM
Legalization

max(OLUT, OFF) < 15%?

Previous ∆A < 1%?

max(OLUT, OFF) < 10% &

max(ODSP, ORAM) < 20%?

DSP/RAM
are Legalized?

Instance
Area Adjust.

Decrease λ

Clustering
LG/DP

Y

N

Y

N

Y

N

N Y

15/29



Density Weight Updating
Update λ using normalized subgradient method

∇̂subλ
(k) =

(
· · · , 1

Φ
(0)
s

(
Φ(k)

s +
cs

2
Φ(k)

s
2
)
, · · ·

)T
.

λ(k+1) = λ(k) + t(k) ∇̂subλ
(k)

‖∇̂subλ(k)‖2
.
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Density Weight Redirecting
Adjust instance areas to optimize routability, pin density, and clustering compatibility

Redirect λ to adapt the perturbation

λ′ = η′
‖∇W̃‖1

〈(· · · , ‖∇Φs‖1, · · · )T , ∇̂subλ〉
∇̂subλ,
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Density Weight Redirecting
Adjust instance areas to optimize routability, pin density, and clustering compatibility

Redirect λ to adapt the perturbation

λ′ = η′
‖∇W̃‖1

〈(· · · , ‖∇Φs‖1, · · · )T , ∇̂subλ〉
∇̂subλ,
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Post-GP Placement

Legalize highly-discrete and large DSP and RAM blocks

Finish the flow by clustering, legalization, and detailed placement
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Area Adjustment Scheme

Compute
Routability-

Optimized Area
Aro

Compute
Pin Density-

Optimized Area
Apo

Compute
Clustering-

Optimized Area
Aco

Adjust Physical
and Filler

Instance Areas

Adjust Density
Multipliers λ

I Non-filler cells: Ai = max(Aro
i ,A

po
i ,A

co
i ,Ai), ∀i ∈ V

I Filler cells: Reduce areas to maintain electrostatic neutrality
I Traditional cell inflation-based routability and pin density optimization
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Clustering Compatibility-Optimized Area

Areas of LUTs and FFs are clustering-dependent

UTPlaceF-DL [Li+, TCAD’19] adjusts areas based on a local clustering estimation

elfPlace improves UTPlaceF-DL’s approaches using various smoothing techniques

I UTPlaceF-DL: Aco
i = 1

2ni,θi

dni,θi/4e∑
θ∈Θi

dni,θ/4e

⌈∑
θ∈Θi

dni,θ/4e
2

⌉
,∀i ∈ V

I elfPlace: Aco
i = 1

2Ei,θi

sdc(Ei,θi ,4)∑
θ∈Θi

sdc(Ei,θ,4)
sdc

(∑
θ∈Θi

sdc(Ei,θ, 4), 2
)
,∀i ∈ V
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elfPlace Animation
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Experimental Setup

Machine
I Intel Core i9-7900 CPUs (3.30 GHz and 10 cores)
I 128 GB RAM

ISPD 2016 contest benchmark suite
I Released by Xilinx
I 0.1M - 1.1M cells

Placers for comparison
I UTPlaceF [Li+, TCAD’18]

I RippleFPGA [Chen+, TCAD’18]

I GPlace3.0 [Abuowaimer+, TODAES’18]

I UTPlaceF-DL [Li+, TCAD’19]

I elfPlace
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Routed Wirelength Comparison

elfPlace significantly outperforms other placers in routed wirelength
I 13.6% better than UTPlaceF

I 11.3% better than RippleFPGA

I 8.9% better than GPlace3.0

I 7.1% better than UTPlaceF-DL
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Runtime Comparison

1-thread elfPlace is
I 1.13× faster than 1-thread UTPlaceF

I 3.65× slower than 1-thread RippleFPGA

I 1.03× slower than 1-thread GPlace3.0

I 1.03× faster than 1-thread UTPlaceF-DL

10-thread elfPlace is
I 3.51× faster than 1-thread elfPlace I 1.31× faster than 10-thread UTPlaceF-DL
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Individual Technique Validation

w/ ePlace’s Multiplier Method
I +1.2% routed wirelength
I +1.0% runtime

w/o preconditioning
I 11 out of 12 designs fail to converge

w/ ePlace’s preconditioning
I 2 out of 12 designs fail to converge
I +0.1% routed wirelength
I +3.0% runtime

w/o Gaussian smoothing and sdc function
I Same routed wirelength
I +15.0% runtime
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Runtime Breakdown

Based on FPGA-12 (1.1M cells) using 10 threads

34.4%

Compute ∇W̃

7.5%

Compute ρ
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Compute ψ and ξ
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Update Parameters
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Conclusion and Future Work

Conclusion
I elfPlace: a general, flat, nonlinear placement algorithm for large-scale heterogeneous FPGAs
I We extend the ePlace algorithm [Lu+, TCAD’15] for ASICs to deal with heterogeneity and

discreteness issues in FPGAs in a unified manner
I We improve the numeric optimization formulation and preconditioning approahces in ePlace

for FPGAs
I We propose a normalized subgradient method to spread heterogeneous cell types in a

self-adaptive manner.
I We improve the clustering-aware area adjustment technique in [Li+, TCAD’19] and integrate it,

together with routability and pin density optimizations.
I We demonstrate more than 7% improvement in routed wirelength, on ISPD 2016 benchmark

suite, over 4 cutting-edge placers with very competitive runtime.

Future Work
I Other optimization algorithms
I Timing-driven placement
I FPGA/GPU acceleration
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