
1

UTPlaceF: A Routability-Driven FPGA Placer with
Physical and Congestion Aware Packing

Wuxi Li, Shounak Dhar, and David Z. Pan Fellow, IEEE

Abstract—FPGA packing and placement without routability
consideration could lead to unroutable results for high-utilization
designs. Conventional FPGA packing and placement approaches
are shown to have severe difficulties to yield good routability.
In this paper, we propose an FPGA packing and placement
engine called UTPlaceF that simultaneously optimizes wirelength
and routability. A novel physical and congestion aware packing
algorithm and a hierarchical detailed placement technique are
proposed. UTPlaceF outperforms state-of-the-art FPGA placers
simultaneously in runtime and solution quality on ISPD 2016
benchmark suite. Compared with the top 3 winners of ISPD’16
FPGA placement contest, UTPlaceF can deliver 6.2%, 11.6%
and 29.1% better routed wirelength with shorter runtime.

I. INTRODUCTION

The field programmable gate array (FPGA) is a type of pre-
manufactured integrated circuit designed to be configured by
customers or designers. FPGAs are becoming more and more
popular nowadays because of their ability to re-program in
the field to fix bugs, shorter time to market, and lower non-
recurring engineering costs. Historically, FPGAs were only
used for fast realization of small digital circuits. However, in
recent years, the gate count of commercial FPGAs has reached
the scale of millions [1], so much more complex digital
systems are moving towards FPGA-based design methodolo-
gies. Fig. 1 illustrates a simplified island-style heterogeneous
FPGA. A traditional island-style FPGA typically contains a
two-dimensional array of configurable logic blocks (CLBs)
and surrounded by peripheral I/O blocks. Nowadays, het-
erogeneous blocks, such as digital signal processors (DSPs)
and random access memories (RAMs), are also becoming
prevalent in modern FPGAs.

A representative FPGA CAD flow is shown in Fig. 2.
During logic synthesis and technology mapping, a circuit is
translated into a netlist composed of lookup tables (LUTs) and
flip-flops (FFs). In the packing stage, several LUTs and FFs
together form a basic logic element (BLE) and then several
BLEs are grouped into a CLB. After packing, placement is
responsible for determining the physical locations of all CLBs
and complex blocks (DSPs/RAMs) while optimizing some
metrics (e.g. wirelength, routability, timing, power, and etc.).
Finally, routing is performed to physically connect CLBs.

As design size and complexity continue to increase dra-
matically, routability has become an important metric in
FPGA domain. Traditional pure wirelength-driven optimiza-
tions without routability consideration often failed to map

The preliminary version has been presented at the International Conference
on Computer-Aided Design (ICCAD) in 2016.

The authors are with The Department of Electrical and Computer
Engineering, The University of Texas at Austin, TX, USA. (e-mails:
wuxi.li@utexas.edu; shounak.dhar@utexas.edu; dpan@ece.utexas.edu)

CLB DSP RAM I/O Routing
Tracks

Fig. 1: A typical island-style FPGA.

Logic Synthesis

Packing

Placement

Routing

Circuit

Technology Mapping

Fig. 2: A representative FPGA CAD flow.

circuits into FPGA devices. Among all CAD stages, packing
and placement play key roles in optimizing various metrics,
particularly routability.

Packing algorithms typically can be divided into three
different categories: 1) seed-based approaches, 2) partitioning-
based approaches, and 3) placement-guided and cluster-
merging-based approaches. Seed-based packing approaches
iteratively choose a BLE to form an initial CLB, then keep
adding other unpacked BLEs into the CLB based on an
attraction function until no more BLEs can be added. VPack
[2], T-VPack [3], RPack [4], iRAC [5], T-NDPack [6], and

MO-Pack [7] are representative examples of seed-based al-
gorithms with different objectives and attraction functions.
Partitioning-based approaches, like [8] and PPack [9], first
apply a k-way partitioning to get a set of potential CLBs,
and then perform a sequence of inter-partition moves to
legalize the packing solution. HDPack [10] is an example
of placement-guided and cluster-merging-based methods. It
incorporates physical information using a min-cut-partitioning
based global placement, and applies the idea of hybrid first
choice clustering (HFCC) from [11] to recursively group
clusters with the highest attraction until no more merging
could be performed.

To improve routability, packing algorithms like [12], iRAC,
[13], Un/DoPack [14], and T-NDPack proposed several dif-
ferent depopulation techniques to prevent CLBs from being
fully filled. Depopulation can be classified into two categories,
uniform depopulation and non-uniform depopulation. iRAC
is a good example of uniform depopulation, it limits cell
utilization of all CLBs based on Rent’s rule. Un/DoPack is a
example of non-uniform depopulation. It first runs through a
regular CAD flow, then depopulates CLBs in the congested
regions based on the routing result.

FPGA placement algorithms are very similar to ASIC’s
placement and typically fall into one of the following
three categories: 1) simulated-annealing-based approaches,
2) min-cut-partitioning-based approaches, and 3) analytical
approaches. Simulated annealing based placers, like VPR
[15], SCPlace [16], and [17], apply a probabilistic searching to
approximate the global optimal solution. Min-cut-partitioning
based placers, e.g. [18], [19], recursively apply min-cut par-
titioning until cells are fully spread out. Analytical placers
typically approximate cost metrics, like wirelength and bin
density, with a smooth objective function, then use numeric
solvers to find the optimal solution. Different analytical place-
ment approaches have been extensively studied in [20]–[28].

A. Motivation
Packing and placement are two key steps to achieve high-
quality physical implementation with good routability. How-
ever, we found that existing academic packing and placement
approaches have the following limitations:

• Existing packing algorithms do not have good knowledge
of cells’ physical locations. Logical packing, which per-
forms packing based only on logical connectivity, could
cluster cells that are physically far apart. As a result,
it may lead to wirelength-unfriendly netlists and worsen
routability. Most seed-based and partitioning-based pack-
ers do not have physical location information and only
perform logical clustering. Existing placement-guided
packers only have rough global placements, which is
of poor quality compared to state-of-the-art placement
engines. We believe that accurate physical information
could better guide packing and yield placement-friendly
CLB level netlists.

• Existing packing algorithms are unaware of actual con-
gestion information, which is crucial for efficient and
high-quality depopulation. Blindly applying uniform de-
population would inevitably worsen wirelength and area,

LUT 0

LUT 1

FF 0

FF 1

O

CK SR

CE0

CE1

Q0

Q1

MUX

X

I

6

(a)

BLE 0

BLE 1

BLE 2

BLE 3

BLE 4

BLE 5

BLE 6

BLE 7
CK0, SR0,
CE0, CE1

CK1, SR1,
CE2, CE3

4

Inputs Outputs

4

(b)

Fig. 3: (a) BLE and (b) CLB in Xilinx Ultrascale architecture.

and it is more efficient to only avoid overpacking in
routing congested regions. Therefore accurate routing
congestion information is of great importance in the
packing stage.

• In recent years, the gate count in modern FPGAs already
reached the scale of millions. Therefore, packing and
placement algorithms with high-quality and good scala-
bility are highly desirable for large scale FPGAs.

B. Contributions
In this paper, we propose a new routability-driven FPGA
packing and placement engine called UTPlaceF. Our main
contributions are listed as follows:
• We propose a novel packing algorithm that incorporates

accurate physical information based on a high-quality
analytical global placement.

• We propose a routing congestion-aware depopulation
technique to efficiently balance wirelength and routabil-
ity in a correct by construction manner.

• We propose a hierarchical congestion-aware detailed
placement technique to improve wirelength without de-
grading routability.

• We perform experiments on the ISPD’16 Routability-
Driven FPGA Placement Contest [29] benchmark suite
released by Xilinx. Compared to the ISPD’16 contest
top 3 winners and other state-of-the-art FPGA placers,
UTPlaceF achieves better routed wirelength with shorter
runtime.

The rest of this paper is organized as follows: Section II
reviews the preliminaries and presents the UTPlaceF frame-
work overview. Section III, Section IV, and Section V give
the details of UTPlaceF packing and placement algorithms.
Section VI shows the experimental results, followed by the
conclusion in Section VII.

II. PRELIMINARIES AND OVERVIEW

A. FPGA Architecture
The ISPD’16 benchmark suite is targeted to Xilinx UltraScale
VU095 [1]. The architecture of BLE and CLB in this FPGA
are shown in Fig. 3. Each CLB has eight BLE sites, and each
BLE contains two LUT sites and two FF sites. The two LUT
sites in a BLE could be implemented as a single 6-input LUT
or two smaller LUTs with the total number of different input
pins less than six. The two FFs in a BLE must share the
same clock (CK) and set/reset (SR) pins, however, their clock
enable (CE) pins could be different. There are two clock pins,

two set/reset pins, and four clock enable pins available for
each CLB. Each clock, set/reset and each two clock enables
are dedicated to four BLEs. More details can be found in [29].

B. Quadratic Placement
A FPGA netlist can be represented as a hypergraph H =
(V,E), where V = {v1, v2, ..., v|V |} is the set of cells,
and E = {e1, e2, ..., e|E|} is the set of nets. Let x =
{x1, x2, ..., x|V |} and y = {y1, y2, ..., y|V |} be the x and y
coordinates of all cells. The wirelength-driven global place-
ment problem is to determine position vectors x and y that
minimize the total wirelength and obey bin density constraint.
Wirelength is measured by the half-perimeter wirelength
(HPWL),

HPWL(x,y) =
∑
e∈E
{max
i,j∈e

|xi − xj |+ max
i,j∈e

|yi − yj |}. (1)

As HPWL is not differentiable everywhere, quadratic placers
approximate it by squared Euclidean distance between cells.
Therefore, the wirelength cost function in quadratic placer is
defined as,

W (x,y) =
1

2
xTQxx+cTxx+

1

2
yTQyy+cTy y+const. (2)

C. UTPlaceF Overview
Fig. 4 shows the flowchart of UTPlaceF. The overall flow is
composed of four parts: 1) flat initial placement (FIP), 2)
physical and congestion aware packing (PCAP), 3) global
placement, and 4) legalization and detailed placement.

Circuit

Global placementBLE packing

Flat initial placement

Related CLB packing

Unrelated CLB packing

#CLB < #CLB Site?

Rip up CLB packing
Change parameters

No Placement done
Yes

Legalization

Hierarchical
independent set matching

PCAP

Fig. 4: Overview of UTPlaceF.

FIP is responsible for generating cells’ physical locations,
and detecting cells that are likely to be placed into routing
congested regions to better guide packing. In the packing
stage (PCAP), LUTs and FFs are first grouped into BLEs,
then BLEs are clustered into CLBs. We assume that FIP
yields the optimal cell relative position, and packing should
not perturb it too much. Therefore PCAP, with cell physical
locations information, disallows long-distance packing and
prefers close packing. Similar to iRAC, absorbing small nets
is treated as the main objective during packing stage of

PCAP to reduce channel width and routing demand, which in
turn improves wirelength and routability. Besides considering
grouping connected cells, PCAP also packs unconnected cells
based on their physical locations to further reduce the number
of CLBs. Leveraged by routing congestion information from
FIP, PCAP can perform loose packing only for cells that
are likely to be placed into routing hotspots, and avoid
blindly depopulating throughout whole netlists for routability
enhancement. By using this congestion-aware depopulation
technique, PCAP is able to achieve both good wirelength and
routability.

Our global placement basically shares the same framework
with FIP but handles CLBs instead of LUTs and FFs. In de-
tailed placement stage, a bipartite-matching-based minimum-
pin-movement legalization is applied first. Then a hierarchical
independent set matching is performed to further reduce wire-
length. To preserve the routability optimized global placement
solution, white spaces and cells in congested regions are
handled specially throughout the detailed placement stage.

III. FLAT INITIAL PLACEMENT

Circuit

YesNo HPWL gap
< 50%?

Quadratic programing

Rough legalization
Rough legalization

Quadratic programming

Estimate routing congestions

History based cell inflation

Legalize DSP, RAM, IO

3 iterations

HPWL gap
< 5%?

No

Yes

Density-preserving global move

Density-preserving global move

Wirelength-Driven Placement

FIP Done

Routability-Driven Placement

Fig. 5: Overall flow of FIP.

Our FIP adopts the main framework of an ASIC placer
POLAR 2.0 [30]. Its overall flow is shown in Fig. 5. In each
iteration of wirelength-driven placement, a quadratic program
is solved followed by rough legalization [31] for reducing
cells overlaps. Then the density preserving global move [32]
is applied to improve the wirelength of the rough-legalized
placement while preserving bin densities. A sequence of pure
wirelength-driven placement iterations is performed until the
gap between the upper bound wirelength and the lower bound
wirelength is less than a certain number, which is 50% in
PCAP. In the routability-driven placement stage, after a certain
number of placement iterations, a fast global router NCTUgr
[33] is called for routing congestion estimation, then similar
to POLAR 2.0, cells in congested regions are inflated by a
small ratio, and the inflation accumulates to the end of FIP.

0 10 20 30 40

0.5

1

1.5

2

2.5

3
·107

Iteration #

H
PW

L
QP Solver

Rough Legalization
DSP/RAM/IO Legalization

Density-Preserving Global Move

(a)

28 30 32 34 36 38

7

7.5

8

8.5

9

9.5
·106

Iteration #

H
PW

L

QP Solver
Rough Legalization

DSP/RAM/IO Legalization
Density-Preserving Global Move

(b)

Fig. 6: HPWL at different steps in FIP of benchmark FPGA-5. (a) All placement iterations (b) Placement iterations in
routability-driven stage.

Different from the first stage, DSPs, RAMs, and I/O blocks
are immediately legalized after rough legalization in this stage.
Since sites for these cells are typically discrete and scattered
on FPGAs, if we handle them like LUTs and FFs in rough
legalization, they might be far away from their legal positions
in the final FIP solution. This discrepancy would introduce
inaccuracy of cell relative positions into FIP. To eliminate
this discrepancy, UTPlaceF performs an extra legalization step
for DSPs, RAMs, and I/Os right after the conventional rough
legalization in the second stage of FIP. By simply doing this,
DSPs, RAMs, and I/Os will use their legal positions as their
anchor points in placement iterations, and the discrepancy
will be eliminated in the final FIP solution. The legalization
approach here will be further discussed in Section V-B.
Fig. 6(a) illustrates the progression of the placement solution
with respect to HPWL in different steps. A zoomed-in view of
the last few iterations, with the legalization for DSPs, RAMs,
and I/Os enabled, is shown in Fig. 6(b).

The two objectives of FIP are: 1) generating physical loca-
tions for each LUT and FF, and 2) detecting LUTs and FFs
that are in routing congested regions. Cell physical locations
are explicitly generated by the wirelength and routability co-
optimized placement. Congestion information associated with
cells is implicitly obtained from history based cell inflation.
The insight of cell inflation is quantifying the possibility of
a cell lying in routing congested regions using its area – a
larger cell area indicates a larger possibility of being placed
into congested regions. After FIP, each LUT and FF would
have a physical location and a cell area, which indicates the
congestion level associated with it.

IV. PHYSICAL AND CONGESTION AWARE PACKING

A. Max-Weighted-Matching-Based BLE Packing
As a BLE in our target FPGA architecture, Xilinx Ultrascale,
contains 2 LUTs and 2 FFs, existing VPR-style BLE packing
algorithms cannot be directly applied. To address this new
BLE architecture, we propose a two-step BLE packing algo-

LUT FF

FF

(a)

LUT FF

(b)

Fig. 7: Different LUT and FF pairing scenarios. (a) LUT
fanouts to multiple FFs, and group with the closest one. (b)
LUT fanouts to one FF that is far away and the grouping is
rejected.

rithm that comprises: 1) LUT and FF pairing, and 2) LUT-FF
pairs matching.

In PCAP, we apply the LUT and FF pairing in a similar
manner to the BLE packing in VPack. As shown in Fig. 7, we
group each LUT to the closest FF in its fanout. Besides that,
long-distance packing is rejected, and only packing within
maximum packing distance of BLE (λb) is allowed. This step
is mainly to make full use of fast connections between LUTs
and FFs that are in the same BLEs.

In the second step, max-weighted matching is used for
finalizing the BLE packing. We construct an undirected
weighted graph UWG = (V,E), where each vi in V =
{v1, v2, ..., v|V |} is an LUT-FF pair, a single LUT, or a single
FF. E = {e1, e2, ..., e|E|} represents the set of legal mergings.
To apply high-attraction and close packing, we say a merging
(vi, vj) is legal if and only if,

1) vi and vj are connected in the netlist.
2) Merging vi and vj into the same BLE does not violate

any packing rules.
3) The merging attraction is greater than the minimum

packing attraction for BLEs (φb).

In the UWG, edge weights are set as merging attractions.

The attraction value for a merging is defined as,

φb(vi, vj) =

(1− eγb(dist(vi,vj)−λb))
∑

p∈Net(vi∩vj)

kb
deg(p)− 1

. (3)

where γb is a constant value being experimentally set as 0.2,
dist(vi, vj) is the Manhattan distance between vi and vj , λb is
the maximum packing distance of BLE which is 4 in PCAP,
Net(ci ∩ cj) is the set of nets shared between vi and vj ,
deg(p) is the total number of pins of net p that is exposed in
cluster level, and kb is 2 for 2-pin nets and 1 for other nets.

The first term, 1− eγb(dist(vi,vj)−λb), is a packing distance
penalty factor in range (−∞, 1− e−γbλb). This factor is very
close to 1 for mergings of distance much less than λb. It
drops quickly as dist(vi, vj) gets close to λb, and becomes
negative once dist(vi, vj) is greater than λb. By using the first
term, short-distance mergings in PCAP are always preferred.
The second term,

∑
p∈Net(vi∩vj)

kb
deg(p)−1 , is introduced for

reducing the number of nets exposed in cluster level, which
in turn improves wirelength and routability. With the second
term, merging two clusters that share more small nets is of
high priority, and 2-pin nets are given even higher weight by
the factor kb = 2. In PCAP, the minimum packing attraction
for BLEs (λb) is set to 0 by default.

A

B

H

E

C
F

ID

G

2.6

3.0

1.7

1.2

2.4

0.5

2.5

1.0

0.4
0.8

Connected subgraphs

Illegal mergings
of connected clusters

Legal mergings

Matched legal mergings

Fig. 8: A simple max-weighted cluster matching example.

Fig. 8 shows a simple cluster matching example. Due to our
rules for legal mergings, the constructed UWG typically is not
connected and comprises many small connected subgraphs.
Mergings in different connected subgraphs are independent,
so PCAP performs a max-weighted matching algorithm on
each of these subgraphs and all matched cluster pairs would
be merged. The location of a merged cluster is set as the
average location of all cells (LUTs and FFs) it contains, and
the cluster area is simply the sum of cell areas. After each
pass of matching and merging, PCAP rebuilds the UWG for
clusters generated from the previous stage and resolves the
max-weighted matching for each new connected subgraph
until no more legal merging exists.

The pseudo-code of the max-weighted-matching-based
BLE packing is summarized in Alg. 1. Each con-
nected subgraph is constructed by calling the function
ConstructConnectedUWG from line 22 to line 42. Nodes
and edges are added into the subgraph in a breadth-first search

Algorithm 1 Max-Weighted-Matching-Based BLE Packing
Require: FIP and LUT-FF pairing are done.
Ensure: BLE level netlist with external nets reduced.
1: while true do
2: numMatching ← 0
3: status[u]← Untouched ∀u ∈ V
4: for each s ∈ V do
5: if status[s] 6= Untouched then
6: continue
7: end if
8: g ← ConstructConnectedUWG(s)
9: Run max-weighted matching on g

10: for each matched edge (u, v) ∈ g do
11: c← {u, v}
12: V ← V \ {u, v} ∪ {c}
13: status[c]← Popped
14: numMatching ← numMatcahing + 1
15: end for
16: end for
17: if numMatching == 0 then
18: return
19: end if
20: end while
21:
22: function ConstructConnectedUWG(s)
23: Initialize an empty UWG g
24: Initialize an empty queue q
25: Push s into q
26: status[s]← InQueue
27: Add s into g
28: while q is not empty do
29: t← fetch and pop q top
30: for each v connected to t do
31: if status[v] 6= Popped and φb(t, v) ≥ φb then
32: if status[v] == Untouched then
33: Push v into q
34: status[v]← InQueue
35: Add v into g
36: end if
37: Add edge (t, v, φb(t, v)) into g
38: end if
39: end for
40: end while
41: return g
42: end function

manner through a queue from line 28 to line 40. When the
subgraph stops growing, the max-weighted matching would
be run on the constructed subgraph at line 9, and mergings
corresponding to matched edges would be committed to the
netlist from line 10 to line 15. The loop of constructing
subgraphs, solving max-weighted matching, and committing
matched mergings are iteratively executed from line 1 to
line 20, and stops at line 18 when no more merging can be
performed. In PACP, it’s very time-consuming to consider all
neighbors of a cell connected by high-degree nets at line 30.
So for each cell, we only consider its neighbors connected by
nets containing at most 16 pins.

The time complexity of Alg. 1 turns out to be
O(|V |(k3 |V ||E| + |Ec|log|Vc|)), where V and E denote the set
of clusters and nets in the netlist, respectively, k denotes the
average number of pins in each cluster in V , and |Vc| and
|Ec| are the average numbers of vertices and edges in each
connected subgraph in the UWG.

On average, each cluster is incident to k nets and each net
contains k |V ||E| clusters, so each cluster in V has O(k2 |V ||E|)
connected neighbors at line 30. Since each attraction calcula-
tion (Eq. (3)) at line 31 takes O(k) time, the graph construc-

tion (ConstructConnectedUWG) for each connected sub-
graph, Gc = (Vc, Ec), has time complexity of O(k3 |V ||E| |Vc|).
Besides, solving the max-weighted matching at line 9 takes
O(|Vc||Ec|log|Vc|) time and the cell mergings from line 10
to line 15 can be done in O(|Ec|) time. The time complexity
of each connected subgraph (line 8 – 15) can be bounded by
O(|Vc|(k3 |V ||E| + |Ec|log|Vc|)). Considering we need to handle

O(|V ||Vc|) such connected subgraphs, Alg. 1, therefore, has total

time complexity of O(|V |(k3 |V ||E| + |Ec|log|Vc|)). In practice,
both |Vc| and |Ec| are relatively small (less than 200) and
independent to the netlist size.

B. Related CLB Packing with Congestion-Aware Depopula-
tion

After BLE packing, we create a CLB for each single BLE.
CLB packing is done by successively merging smaller CLBs
into larger ones. CLBs that share common nets are said to
be related, and in this stage, only related CLBs mergings are
considered.

The BestChoice Clustering (BC) [34] is used as our main
engine for related CLB packing. In BC, the attractions of all
legal CLB mergings are calculated first, then the algorithm
iteratively merges CLB pairs with the highest attraction using
a priority queue (PQ). The location and area of a merged CLB
is set as the average location and total area of cells it contains,
respectively. After each merging, the legality and attraction of
mergings related to the new CLB are updated accordingly.

In PCAP, a related CLB merging (ci, cj) is said to be legal
if and only if

1) ci and cj are connected in the netlist.
2) Merging ci and cj into the same CLB does not violate

any packing rules.
3) The merging attraction is greater than the minimum

packing attraction for related CLBs (φrc).
4) Total area of ci and cj is no greater than the maximum

CLB area (ac).
The first three rules are inherited from our BLE packing.

The fourth rule is introduced to perform congestion-aware
depopulation and avoid overpacking in routing congested
regions. Note that all the cell areas used in the fourth rule
are from the accumulated cell inflation in FIP. As discussed
in Section III, cells with larger areas indicate higher possibility
to be placed into routing congested regions. By constraining
area of each CLB, PCAP would apply loose packing in routing
congested regions, and tight packing in other regions. This
congestion awareness makes PCAP able to achieve a good
trade-off between wirelength and routability. Fig. 9 illustrates
our congestion-aware depopulation technique. Note that BLEs
with larger areas are in routing congested regions.

The attraction function of related CLB mergings (ci, cj) is
defined as,

φrc(ci, cj) =

(1− eγrc(dist(ci,cj)−λrc))
∑

p∈Net(ci∩cj)

krc
deg(p)− 1

. (4)

Eq. (4) is basically a replica of our BLE packing attraction
function defined in Eq. (3), but differs only by some constant

BLE

CLB

Tight packing
Uncongested region

Loose packing
Congested region

Fig. 9: Congestion-aware depopulation of PCAP during CLB
packing.

parameters. We experimentally set γrc to 0.2, and λrc to 6.
krc is 2 for 2-pin nets and 1 for other nets. The minimum
packing attraction for related CLBs (φrc) is set to 0.1, and
the maximum CLB area (ac) is set as 1.8 times average CLB
area by default.

A

CD

B

(a)

AD

C

B

(b)

Fig. 10: Merging a pair of clusters A and D, assuming
dist(B,C) = 1, γrc = 0.2, λrc = 6. (a) Before merging
A and D, φrc(B,C) ≈ 0.211, (b) After merging A and D,
φrc(B,C) ≈ 0.316.

Our BC-based related CLB packing algorithm has several
major differences compared with the traditional BC cluster-
ings. In traditional BC, a speedup technique called lazy update
[34] is widely adopted, and this technique relies on their
observation that the vast majority of attraction updates are
decreasing their ranking in the PQ. However, this observation
does not apply to our packing algorithm. Fig. 10 shows a
simple example, before merging clusters A and D, B and
C only share a 4-pin net, and after the merging, the 4-pin
net becomes a 3-pin net in the cluster level netlist, therefore
the attraction between B and C increases due to the second
term in Eq. (4). We can see that this kind of attraction
increases could happen to any cluster pairs that share nets with
more than 3 pins and all attraction updates in our BC-based
related CLB packing would increase their ranking in the PQ.
Therefore, lazy update cannot be adopted here. To guarantee
the globally best merging candidate can always be fetched in
each iteration, instead of only considering the best neighbor
for each cluster in the traditional BC, we push all possible
mergings for each cluster into the PQ and dynamically update
all merging attractions affected by each committed merging.

Algorithm 2 BC-based Related CLB Packing
Require: BLE packing is done.
Ensure: CLB level netlist with external nets reduced.
Ensure: All CLB packing rules are satisfied.
Ensure: Cells in routing congested regions are not overpacked.
1: Create an empty priority queue PQ
2: valid[u]← true ∀u ∈ V
3: for each u ∈ V do
4: for each v connected to u do
5: if φrc(u, v) ≥ φrc then
6: Push (u, v, φrc(u, v)) into PQ
7: end if
8: end for
9: end for

10: while PQ is not empty do
11: (ci, cj , φrc(ci, cj))← fetch and pop PQ top
12: if valid[ci] and valid[cj] then
13: cij ← {ci, cj}
14: V ← V \ {ci, cj} ∪ {cij}
15: valid[ci], valid[cj]← false
16: valid[cij]← true
17: for each ck connected to cij do
18: if φrc(ck, cij) ≥ φrc then
19: Push (ck, cij , φrc(ck, cij)) into PQ
20: end if
21: end for
22: for each net e shared by ci and cj do
23: for each (cp, cq , φ

pq
rc) such that that cp and cq share e do

24: if valid[cp] and valid[cq] then
25: φpqrc ← φrc(cp, cq)
26: Update the ranking of (cp, cq , φ

pq
rc) in PQ

27: end if
28: end for
29: end for
30: end if
31: end while

The pseudo-code of our BC-based related CLB packing is
summarized in Alg. 2. Initially, all legal merging candidates
are pushed into a PQ from line 3 to line 9. Each time the
merging candidate with the highest attraction is popped from
the PQ top at line 11 and is committed to the netlist from
line 13 to line 14. New merging candidates related to the new
cluster are pushed into the PQ from line 17 to line 21. All
attractions that are affected by the new merging are updated
from line 22 to line 29. The loop from line 10 to line 31 keeps
executing until no more merging candidates exist in the PQ.
Similar to our BLE packing, we ignore nets that have more
than 16 pins in Alg. 2 line 4 and line 17 to speed up the
runtime.

Alg. 2 turns out to have O((1 + |V |
|E|)k

2 |V |2
|E| (k +

log(k2 |V |
2

|E|))) time complexity, where V and E denote the
set of clusters and nets in the BLE-level netlist, respectively,
and k is the average number of pins in each cluster in V .

We first consider the PQ initialization from line 1 to line 9.
Each cluster in V has O(k2 |V ||E|) connected neighbors, since,
on average, each cluster is incident to k nets and each net
contains k |V ||E| clusters. Thus, initially, there are O(k2 |V |

2

|E|)
merging candidates being pushed into the PQ and the initial-
ization time can be bounded by O(k2 |V |

2

|E| log(k2 |V |
2

|E|)).
Then, we analyze the loop from line 10 to line 31. The num-

ber of mergings performed at line 13 is bounded by O(|V |),
and after each merging, O(k2 |V ||E|) PQ push operations are
executed from line 17 to line 21. Therefore, from line 10 to
line 31, the total number of new merging candidates being
pushed into the PQ is bounded by O(k2 |V |

2

|E|). Considering

there are O(k2 |V |
2

|E|) merging candidates in the initial PQ,

the PQ size then can be bounded by O(k2 |V |
2

|E|) at any time
during Alg. 2 execution and the total time taken by PQ pop
at line 11 can be bounded by O(k2 |V |

2

|E| log(k2 |V |
2

|E|)). Since
each attraction evaluation (Eq. (4)) at line 18 takes O(k) time
and each PQ push at line 19 takes O(log(k2 |V |

2

|E|)) time,
the loop from line 17 to line 21 has time complexity of
O(k2 |V ||E| (k+log(k2 |V |

2

|E|))). By assuming any pair of merging
clusters shares O(1) common nets, the PQ update at line 25
and line 26 needs to be performed O(k2 |V |

2

|E|2) times for each
cij . So the time complexity of the loop from line 22 to line
29 is O(k2 |V |

2

|E|2 (k + log(k2 |V |
2

|E|))). Combining all these time
complexities and the O(|V |) bound of the execution counts
for the two loops (line 17 – 21 and line 21 – 29), the main
loop from line 10 to line 31 turns out to have time complexity
of O((1 + |V |

|E|)k
2 |V |2
|E| (k + log(k2 |V |

2

|E|))).

The final O((1 + |V |
|E|)k

2 |V |2
|E| (k+ log(k2 |V |

2

|E|))) time com-
plexity of Alg. 2 then can be derived by summing the analysis
results of the PQ initialization and the loop from line 10 to
line 31.

C. Size-Prioritized K-Nearest-Neighbor Unrelated CLB
Packing

CLBs without common nets are said to be unrelated. After
related CLB packing stage, unrelated CLB mergings are
considered. Different from related CLB packing, in which
reducing external nets is the main objective, unrelated CLB
packing aims to reduce the number of CLBs.

BC-based approaches typically could yield very good pack-
ing solutions for given attraction functions. However, they
have an inherent drawback – inability of making tight packing.
Generally, BC would generate a large number of medium-
sized clusters that are difficult to merge further due to the
cluster capacity constraint. To mitigate this issue, we pro-
posed a size-prioritized BC-based unrelated CLB packing. By
assigning higher priority to mergings producing larger CLBs,
medium-sized CLBs would be promoted quickly. As a result,
much tighter packing solutions can be achieved.

Unlike the related CLB packing technique in Alg. 2, where
all merging candidates are in one single PQ, we have a
separate PQ for each merging size in the unrelated CLB
packing. In other words, merging candidates are separated
by the number of BLEs in their resulting CLBs, and only
mergings result in same BLE count could be placed into the
same PQ. The PQ corresponding to larger merging size is
grant higher priority and always be processed first.

Within each PQ, BC-based unrelated CLB packing is
performed in a manner similar to our related CLB packing.
For a CLB, however, instead of considering all its connected
CLBs, its K-nearest neighbors (in terms of physical distance)
within distance λuc would be considered in our unrelated
CLB packing. Besides, a different attraction function defined
in Eq. (5) is used.

φuc(ci, cj) = 1− eγuc(dist(ci,cj)−λuc). (5)

The attraction function φuc is a packing distance penalty
factor similar to the first terms of Eq. (3) and Eq. (4). In

UTPlaceF, we set γuc to 0.2, λuc to 8, and K to 30 by
default. Note that, although the objective of our unrelated
CLB packing is to reduce the number of CLBs and deliver
tight packing, the congestion-aware depopulation technique
described in Section IV-B is still applied in this stage to
maintain good routability.

The pseudo-code of our size-prioritized K-nearest-neighbor
unrelated CLB packing is summarized Alg. 3. Initially, all
merging candidates are pushed into a PQ array (pq[∗]) from
line 2 to line 7. The merging candidates of each cluster are
added by calling the function AddKNearestNeighbors
from line 31 to line 42. Each time, among all non-empty PQs
in pq[∗], the one corresponding to the largest merging size
is fetched at line 9. The merging candidate with the highest
attraction in the fetched PQ is popped from the PQ top at line
10 and is committed to the netlist from line 12 to line 13. New
merging candidates that include the new cluster are pushed
into pq[∗] by calling function AddKNearestNeighbors
at line 17. Line 18 to line 27 guarantee that each cluster has
merging candidates in pq[∗] if legal merging exists. The loop
from line 8 to line 29 keeps executing until no more merging
candidates exist in pq[∗].

The time complexity of Alg. 3 turns out to be O(|V |λuc
2
+

K|V |log(K|V |)), where V denotes the set of clusters in the
netlist and K is the maximum number of neighbors being
considered for each cluster during the packing.

It is reasonable to assume that each cluster has aver-
age of O(K) valid mergings candidates in pq[∗], since
AddKNearestNeighbors is only called during pq[∗] ini-
tialization (at line 6) and when a certain cluster doesn’t
have any valid merging candidates in pq[∗] (at line 17 and
line 23). Given this assumption, each merging performed at
line 12 would invalidate O(K) merging candidates in pq[∗]
on average, which could trigger average of O(1) calls of
AddKNearestNeighbors at line 23 for clusters that lose
all of their valid merging candidates in pq[∗]. Therefore,
AddKNearestNeighbors is only called O(1) times (at
line 17 and line 23) on average for each merging per-
formed from line 12 to line 27. Considering the number
of merging performed is bounded by O(|V |) and there are
O(|V |) calls of AddKNearestNeighbors during pq[∗]
initialization at line 6, we can get the following three inter-
mediate bounds: 1) there are total of O(|V |) function calls of
AddKNearestNeighbors in Alg. 3, 2) there are total of
O(K|V |) merging candidates being pushed into and popped
out of pq[∗] in Alg. 3, and 3) the size of pq[∗] is bounded by
O(K|V |) at any time during Alg. 3 execution.

We first analyze the total time consumed by
AddKNearestNeighbors. The time complexity of
finding the K-nearest feasible neighbors within the
distance of λuc for a given cluster u can be bounded
by O(log|V |+λuc

2
), since collecting feasible clusters within

the distance of λuc to u takes O(log|V | + λuc
2
) time if all

cluster locations are stored in an R-tree or a k-d tree, and
getting the K-nearest neighbors of u in O(λuc

2
) clusters

can be achieved in amortized O(λuc
2
) time. Besides, each

of the O(K) PQ pushes at line 34 takes O(log(K|V |)) time,

Algorithm 3 Size-Prioritized K-Nearest-Neighbor Unrelated
CLB Packing
Require: Related CLB packing is done.
Ensure: CLB level netlist with total number of CLBs reduced.
Ensure: All CLB packing rules are satisfied.
Ensure: Cells in routing congested regions are not overpacked.
1: // Create an empty priority queue for each merging size
2: pq[i]← ∅ ∀i ∈ 2, 3, ..., N
3: valid[u]← true ∀u ∈ V
4: numMergings[u]← 0 ∀u ∈ V
5: for each u ∈ V do
6: AddKNearestNeighbors(u)
7: end for
8: while ∃i ∈ 2, 3, ..., N : pq[i] 6= ∅ do
9: PQ← pq[i] where pq[i] 6= ∅ and pq[j] == ∅ ∀j ∈ i+ 1, ..., N

10: (ci, cj , φuc(ci, cj))← fetch and pop PQ top
11: if valid[ci] and valid[cj] then
12: cij ← {ci, cj}
13: V ← V \ {ci, cj} ∪ {cij}
14: valid[cij]← true
15: valid[ci], valid[cj]← false
16: numMergings[cij]← 0
17: AddKNearestNeighbors(cij)
18: for each u ∈ ci, cj do
19: for each v such that (u, v, φuc(u, v)) ∈ pq[∗] do
20: if valid[v] then
21: numMergings[v]← numMergings[v]− 1
22: if numMergings[v] == 0 then
23: AddKNearestNeighbors(v)
24: end if
25: end if
26: end for
27: end for
28: end if
29: end while
30:
31: function AddKNearestNeighbors(u)
32: for each v ∈ {v ∈ V |dist(u, v) ≤ λuc} sorted by dist(u, v) do
33: if φuc(u, v) ≥ φuc then
34: Push (u, v, φuc(u, v)) into pq[numBLEs(u ∪ v)]
35: numMergings[u]← numMergings[u] + 1
36: numMergings[v]← numMergings[v] + 1
37: if numMergings[u] == K then
38: return
39: end if
40: end if
41: end for
42: end function

the time complexity of AddKNearestNeighbors turns
out to be O(λuc

2
+ Klog(K|V |)). Considering there are

O(|V |) calls of AddKNearestNeighbors in Alg. 3, the
total time taken by AddKNearestNeighbors then can be
bounded by O(|V |λuc

2
+K|V |log(K|V |)).

As for non-AddKNearestNeighbors parts, the PQ pop
at line 9 and line 10 takes total of O(K|V |log(K|V |)) time
by assuming pq[∗] contains a constant number of PQs. Since
the number of mergings performed is bounded by O(|V |),
the code from line 12 to line 27 can only be executed O(|V |)
times. In each of these O(|V |) executions, by ignoring the
AddKNearestNeighbors at line 23, the loop from line 18
to line 27 takes O(K) time. Therefore, without considering
the AddKNearestNeighbors at line 17 and line 23, the
time complexity of the loop from line 8 to line 29 turns out
to be O(K|V |log(K|V |) + K|V |), which can be simplified
to O(K|V |log(K|V |)).

Combining the results of the AddKNearestNeighbors
part and the non-AddKNearestNeighbors parts, we can
finally bound the time complexity of Alg. 3 by O(|V |λuc

2
+

K|V |log(K|V |)).
For high-utilization designs, our default unrelated CLB

packing might still not be able to generate tight enough
packing solutions that satisfy FPGA capacity constraint. In
this case, the existing packing solution will be ripped up,
and new related and unrelated CLB packing parameters will
be adopted to generate a tighter packing solution in the next
packing pass. PCAP would iteratively perform this rip-up and
repacking loop until the FPGA capacity constraint is satisfied.
The details of this rip-up and repacking phase will be further
discussed in Section IV-D.

D. Net Reduction and Packing Tightness Trade-off
Our related CLB packing works effectively to reduce the
number of external nets, however, it often yields relatively
loose packing due to the inherent shortcoming of BC men-
tioned in section IV-C. In contrast, our unrelated CLB packing
is capable of aggressively reducing the number of CLBs
and achieving tight packing. Therefore, if more packing is
performed in the related CLB packing stage, a loose packing
solution with less external nets would be delivered. However,
if we only do a small portion of packing in the related CLB
packing stage and leave most of the work to unrelated CLB
packing, the final packing would be more inclined to the
“tight” side with more external nets.

In PCAP, the minimum related CLB packing attraction
(φrc) and the maximum unrelated CLB packing distance (λuc)
are used to control the amount of packing work for each
(related/unrelated) CLB packing stage. Initially, φrc is set
as 0.1 to aggressively reduce the number of external nets,
and λuc is set as 8 to only allow close packing in unrelated
CLB packing stage. This initial setting typically results in a
loose packing with a large amount of net reduction. For high-
utilization designs, however, the packing solution generated
by the initial setting could be sparse to the extent that number
of CLBs exceeds the FPGA capacity. To address this problem,
PCAP would discard the existing CLB packing solution (but
respect BLE packing solution) and perform a repacking step,
which applies related and unrelated CLB packing again. In the
repacking phase, however, φrc is increased to reduce related
CLB packing, and λuc is also increased to allow unrelated
CLB packing of longer distance. As results, the repacking step
would achieve tighter packing but sacrifice net reduction. The
repacking step is repeated until the CLBs utilization target is
satisfied.

The pseudo-code of our rip-up and repacking is summa-
rized in Alg. 4. In UTPlaceF, we experimentally set Umax to
0.999, ∆φrc to 0.3, and βλuc

to 1.414.

V. POST-PACKING PLACEMENT

A. Global Placement
After PCAP, the global placement is performed immediately
to further optimize wirelength and routability. Our global
placement shares the same framework and parameter settings
with FIP, but instead of optimizing flat LUT/FF netlist, it
considers each CLB as a whole. It is an incremental placement
using the FIP solution as the starting point to speed up
wirelength convergence. Since the initial CLB-level placement

Algorithm 4 CLB Packing and Rip-up and Repacking
Require: BLE packing is done.
Require: Maximum FPGA CLB utilization Umax, maximum unrelated CLB

packing distance incrasing rate βλuc
, and minimum related CLB packing

attraction increasing rate ∆φrc.
Ensure: Maximum FPGA CLB utilization constraint is satisfied.
1: while true do
2: Perform related CLB packing
3: Perfrom unrelated CLB packing
4: if CLB utilization ≤ Umax then
5: return
6: end if
7: λuc ← λuc · βλuc
8: φrc ← φrc + ∆φrc
9: end while

induced from FIP is more or less close to the optimal
solution, we skip the wirelength-driven phase in Fig. 5 and
directly apply the routability-driven phase to further reduce
the runtime. To avoid global placement being stuck in the
local optimal around FIP, the weight of pseudo-nets for cell
spreading is reduced at the beginning of global placement.

B. Min-Cost Bipartite Matching Based Legalization
A notable difference between ASIC and FPGA legalization is
that ASIC standard cells have different dimensions whereas
FPGA CLBs have the same size. Because of this special
property, FPGA legalization problem can be formulated as
a min-cost-max-cardinality bipartite matching problem with
pin movement as cost. By solving the corresponding bipartite
matching problem, global placement can be legalized with
minimum total pin movement. However, solving a complete
bipartite matching for large designs is impractical in terms of
runtime. To address this problem, we partition the placement
region into a set of uniform rectangle partitions, then apply
a min-cost bipartite matching for each partition. To further
speed up runtime, edges in bipartite graphs are pruned based
on Manhattan distance and are incrementally added when
necessary.

Our legalization approach is summarized in Alg. 5. The
placement region is partition into a set of uniform rectangle
regions at line 1. For each partition, we put all cells and
all unoccupied sites into two sets at line 3 and line 4. To
make sure each min-cost bipartite matching has enough sites
to accommodate all cells, neighbor available sites are added
when necessary from line 5 to line 7. The bipartite graph is
constructed at line 8 with all the cells as left vertices and
all the sites as right vertices in the graph. Edges between left
vertices (cells) and right vertices (sites) are added from line 12
to line 17, and the edge pruning based on Manhattan distance
is applied at the same time. The min-cost bipartite matching
is solved at line 18, and cells are moved to their matched
sites from line 19 to line 26. If no feasible solution is found,
the maximum displacement constraint is increased at line 27
and line 28, and the loop from line 11 to line 29 is repeated.
In UTPlaceF, we set partition width and height to 42 and 60
respectively, initial maximum displacement Dmax to 4, and
maximum displacement increasing rate ∆Dmax to 2.

Similar to CLBs, heterogeneous blocks like DSPs, RAMs,
and I/Os also have the regularity of sizes, so they are legalized
separately using Alg. 5 with minor variations in UTPlaceF as
well.

Algorithm 5 Min-Cost Bipartite Matching Based Legalization
Require: Packing and global placement is done.
Require: Initial max displacement Dmax and max displacement

increasing rate ∆Dmax

Ensure: Legalized placement with minimum total pin movement.
1: Partition the placement region into a set of rectangle regions P
2: for each p ∈ P do
3: L← unlegalized CLBs in p
4: R← unoccupied sites in p
5: while |L| > |R| do
6: Add the closest unoccupied site to p into R
7: end while
8: Construct a |L| × |R| bipartite graph g with left vertex set

L and right vertex set R
9: dmin ← 0

10: dmax ← Dmax

11: while true do
12: for each l ∈ L, r ∈ R do
13: if dmin ≤ dist(l, r) < dmax then
14: cost← dist(l, r) · numPins(l)
15: Add edge (l, r, cost) into g
16: end if
17: end for
18: Run min-cost bipartite matching on g
19: if number of matched edges == |L| then
20: for each matched edge (l, r) do
21: Move l to r’s location
22: Mark l as legalized
23: Mark r as unoccupied
24: end for
25: return
26: end if
27: dmin ← dmax
28: dmax ← dmax + ∆D
29: end while
30: end for

The time complexity of Alg. 5 is O(|V |
3

|P |2 log
|V |
|P | log(|V ||P |C)),

where V denotes the set of cells, P denotes the set of
partitions, and C is the maximum cost value returned at line
14.

The number of cells in each partition is O(|V ||P |) on average.
By assuming the loop from line 5 to line 7 can also be finished
in O(|V ||P |) time, the bipartite graph initialization from line 3

to line 8 can be done in O(|V ||P |) time. Since the edge pruning
complicates the complexity analysis, here we only consider
the worst case, where dmin = 0 and dmax = infinity at line
9 and line 10, respectively. Given this assumption, each bipar-
tite graph has O(|V ||P |) vertices and O(|V |

2

|P |2) edges. As results,
the time complexity of the edge construction from line 12 to
line 17 is O(|V |

2

|P |2). By applying network simplex algorithm
[35], the min-cost bipartite matching at line 18 can be solved
in O(|V |

3

|P |3 log
|V |
|P | log(|V ||P |C)) time. After that, moving cells to

their matched sites from line 19 to line 26 takes O(|V |
2

|P |2) time.
Assembling all pieces together, the time complexity of legaliz-
ing one partition can be bounded by O(|V |

3

|P |3 log
|V |
|P | log(|V ||P |C))

and the total time complexity of handling |P | partitions turns
out to be O(|V |

3

|P |2 log
|V |
|P | log(|V ||P |C)).

It should be noted that, in practice, the number of edges in
each bipartite graph is far less thanO(|V |

2

|P |2) due to our pruning
technique, so the empirical runtime of Alg. 5 is much faster
than the above theoretical complexity bound.

C. Congestion-Aware Hierarchical Independent Set Matching
The idea of bipartite matching can also be applied to optimize
wirelength. For a given set of legalized cells, a wirelength
optimization problem can be formulated as a min-cost bi-
partite matching with edge weights as HPWL increase of
moving cells to different sites. However, solving this matching
problem cannot guarantee the optimal HPWL improvement,
since the edge weight of a cell depends on the positions of
other connected cells in the same matching set. To overcome
this drawback, we adopt the independent set matching (ISM)
idea from NTUPlace3 [36] and only apply matching within a
set of cells that do not share any nets. Besides, white spaces
are also considered in our matching to further increase the
solution space.

In UTPlaceF, ISM is hierarchically applied to CLBs, BLEs
and LUT pairs. One main objective of our packing stage
(PCAP) is to absorb small nets into clusters (BLEs, CLBs).
Therefore, most CLBs essentially are clusters of LUTs and
FFs that have strong connectivity. One of our key observation
is that moving cells with strong connectivity together helps
to jump out of local optima in terms of wirelength, so ISM
is applied to CLBs first in UPlaceF. However, even though
most CLBs contain strongly connected cells, they are clusterd
only based on physical distance and connectivity but are not
aware of wirelength. Thus ISM for BLEs and LUT pairs
are introduced to fix our CLB packing and BLE packing
respectively after CLB level ISM.

C
on

ge
st
ed

U
nc

on
ge

st
ed

CLB

Site

Space

Fig. 11: Illustration of our congestion-aware ISM.

The ISM works effectively for optimizing HPWL. However,
it could ruin the local cell density optimized for routability,
especially when spaces are considered in our ISM. To mitigate
this problem, we propose a congestion-aware ISM with three
extra constraints introduced: 1) cells can be moved out of
but not into routing congested regions, 2) spaces can be
moved into but not out of congested regions, and 3) moves
within congested regions are disallowed. Fig. 11 shows a
simple matching example with the extra constraints applied.
To get accurate congestion information, the routing congestion
map is updated after a certain number of ISM iterations. By
applying our congestion-aware ISM, HPWL can be optimized
without routability degradation.

The pseudo-code of our congestion-aware ISM is summa-
rized in Alg. 6. Each independent set is generated at line 2 by
calling function GenerateIndepSet from line 16 to line
29. The bipartite graph is constructed from line 3 to line 9. The
cost of each edge is calculated by function GetMovingCost
from 31 to 39, the extra routability rules are applied here as

Algorithm 6 Congestion-Aware Independent Set Matching
Require: Placement is legal.
Require: Routing utilization threshold Uth, maximum independent

set size Nis, and maximum independent set radius Dis.
Ensure: Legalized placement with shorter wirelength and no

routability degradation.
1: for each u ∈ V do
2: S ← GenerateIndepSet(u)
3: Construct a |S| × |S| min-cost bipartite graph g
4: for each l ∈ left vertex set of g do
5: for each r ∈ right vertex set of g do
6: cost← GetMovingCost(l, r)
7: Add the edge (l, r, cost) into g
8: end for
9: end for

10: Run min-cost bipartite matching on g
11: for each matched edge (l, r) do
12: Move l to r’s location
13: end for
14: end for
15:
16: function GenerateIndepSet(s)
17: isIndep[u]← true ∀u ∈ V
18: for each u ∈ {s} ∪ {x ∈ V |dist(s, x) ≤ Dis} do
19: if isIndep[u] then
20: S ← S ∪ {u}
21: if |S| ≥ Nis then
22: return S
23: end if
24: for each v connected to u do
25: isIndep[v]← false
26: end for
27: end if
28: end for
29: end function
30:
31: function GetMovingCost(l, r)
32: if l is a cell and routing utilization at r > Uis then
33: return infinity
34: end if
35: if l is a white space and routing utilization at l > Uis then
36: return infinity
37: end if
38: return HPWL increase of moving l to r’s location
39: end function

well. The min-cost bipartite matching is solved at line 10,
and cells are moved to their matched locations from line 11
to line 13. This algorithm is sequentially executed for CLBs,
BLEs, and LUT pairs to successively optimize wirelength in
different levels. Note that for BLE ISM, the clock legality of
CLBs must be preserved, so each independent set can only
contain BLEs belong to the same clock net (and may also
contain BLEs without clocks). In UTPlaecF, Uth is set to 0.7,
Nis is set to 50, and Dis is set to 10 by default.

The time complexity of Alg. 6 turns out to be O(|V |(D2
is+

k2 |V ||E|Nis + kN2
is +N3

islogNislog(NisC))), where V and E
are the set of cells and nets, respectively, k is the average
number of pins in each cell in V , and C is the maximum
non-infinity cost returned by GetMovingCost.

In each call of GenerateIndepSet, the number of
iterations of the loop from line 18 to line 28 is bounded by
O(D2

is), but no more than Nis of them can execute the loop
from line 24 to line 26. In addition, for each of these Nis
iterations, line 25 is executed for O(k2 |V ||E|) times, since, on

average, each cell is connected to k nets and each net have
k |V ||E| cells. Thus, each GenerateIndepSet can be finished

in O(D2
is + k2 |V ||E|Nis) time.

In our implementation, each call of GetMovingCost
takes amortized O(k2 |V |

|E|Nis
+ k) time. During each bipartite

matching run, the HPWL of O(kNis) nets could be changed.
We first use brute-force approach to precompute the bounding
boxes of these O(kNis) nets without considering cells in the
independent set S, which takes O(k2 |V ||E|Nis) time. Then, for
each of these nets, the HPWL change of moving any cell
in S can be obtained in O(1) time. Consequently, the total
HPWL change of moving any cell in S can be computed
in O(k) time. Note that, in each bipartite graph construction
from line 3 to line 9, the precomputation for net bounding
boxes only needs to be done once but GetMovingCost are
called O(N2

is) times, so the amortized time complexity of
GetMovingCost is O(k2 |V |

|E|Nis
+ k). The time complexity

of each bipartite graph construction from line 3 to line 9 then
can be bounded by O(k2 |V ||E|Nis + kN2

is) time.
By applying network simplex algorithm [35], each min-

cost bipartite matching at line 10 can be solved in
O(N3

islogNislog(NisC)) time. After that, moving cells to
their matched sites (line 11 – 13) can be done in O(N2

is)
time.

Combining all the analysis results, the time complexity of
each iteration of the main loop (line 1 – 14) is O(D2

is +

k2 |V ||E|Nis + kN2
is + N3

islogNislog(NisC)). Considering the
main loop are executed O(|V |) times, we can conclude that
the time complexity of Alg. 6 is O(|V |(D2

is + k2 |V ||E|Nis +

kN2
is +N3

islogNislog(NisC))).

VI. EXPERIMENTAL RESULTS

UTPlaceF was implemented in C++ and tested on a Linux
machine with 3.40 GHz CPU and 32GB RAM. The bench-
mark suite released by Xilinx for ISPD’16 FPGA placement
contest was used to validate the effectiveness of UTPlaceF.
Related executables, placement solutions, and benchmarks are
released at link (http://www.wuxili.net/UTPlaceF.html).

A. Benchmark Characteristics

TABLE I: ISPD’16 Placement Contest Benchmarks Statistics
Benchmark #LUT #FF #RAM #DSP #Ctrl Set

FPGA-1 50K 55K 0 0 12
FPGA-2 100K 66K 100 100 121
FPGA-3 250K 170K 600 500 1281
FPGA-4 250K 172K 600 500 1281
FPGA-5 250K 174K 600 500 1281
FPGA-6 350K 352K 1000 600 2541
FPGA-7 350K 355K 1000 600 2541
FPGA-8 500K 216K 600 500 1281
FPGA-9 500K 366K 1000 600 2541

FPGA-10 350K 600K 1000 600 2541
FPGA-11 480K 363K 1000 400 2091
FPGA-12 500K 602K 600 500 1281
Resources 538K 1075K 1728 768 N/A

The characteristics of ISPD’16 benchmark suite are listed in
Table I. This benchmark suite has cell count ranging from 0.1
to 1.1 million, which is much larger than existing academic

http://www.wuxili.net/UTPlaceF.html

TABLE II: Comparison with ISPD’16 Contest Winners on ISPD 2016 Benchmark Suite

Benchmark 1st Place 2nd Place 3rd Place UTPlaceF
Routed WL Runtime(s) Routed WL Runtime(s) Routed WL Runtime(s) Routed WL Runtime(s)

FPGA-1 PE* N/A 379932 118 581975 97 356769 185
FPGA-2 677877 435 679878 208 1046859 191 642108 305
FPGA-3 3223042 1527 3660659 1159 5029157 862 3215087 831
FPGA-4 5628519 1257 6497023 1149 7247233 889 5409765 824
FPGA-5 10264769 1266 UR N/A UR N/A 9659958 1237
FPGA-6 6630179 2920 7008525 4166 6822707 8613 6487628 1041
FPGA-7 10236827 2703 10415871 4572 10973376 9169 10104837 1721
FPGA-8 8384338 2645 8986361 2942 12299898 2741 7879022 1686
FPGA-9 UR† N/A 13908997 5833 UR N/A 12369055 2537

FPGA-10 PE N/A PE N/A UR N/A 8794515 3182
FPGA-11 11091383 3227 11713479 7331 UR N/A 10196038 2151
FPGA-12 9021769 4539 PE N/A UR N/A 7755443 2944

Norm. +6.2% 1.55× +11.6% 2.30× +29.1% 3.10× +0.0% 1.00×
* PE: Placement error
† UR: Unroutable placement

TABLE III: Comparison with State-of-the-Art Academic FPGA Placers on ISPD 2016 Benchmark Suite

Benchmark [26] * RippleFPGA [27] GPlace [28] UTPlaceF
Routed WL Runtime(s) Routed WL Runtime(s) Routed WL Runtime(s) Routed WL Runtime(s)

FPGA-1 384709 215 362563 74 493788 30 356769 185
FPGA-2 652690 399 677563 167 903099 61 642108 305
FPGA-3 3181331 1555 3617466 1037 3908244 289 3215087 831
FPGA-4 5504083 1289 6037293 621 6277878 280 5409765 824
FPGA-5 10068879 1237 10455204 1012 UR N/A 9659958 1237
FPGA-6 6411247 2827 6960037 2772 7643382 600 6487628 1041
FPGA-7 10040562 2588 10248020 2170 11255351 691 10104837 1721
FPGA-8 8113483 2705 8874454 1426 9323360 734 7879022 1686
FPGA-9 13616625 3407 12954350 2683 14002965 974 12369055 2537

FPGA-10 8866049 4091 8564363 5555 UR N/A 8794515 3182
FPGA-11 10834629 3267 11226088 3636 12367773 923 10196038 2151
FPGA-12 8246410 4625 8928528 9748 UR N/A 7755443 2944

Norm. +3.7% 1.47× +7.3% 1.61× +16.8% 0.38× +0.0% 1.00×
* This is the preliminary version of UTPlcaeF that was published on ICCAD’16.

TABLE IV: Runtime Breakdown of UTPlaceF
Benchmark FIP PCAP GP Legalization Hierarchical ISM Others Total

BLE Related CLB Unrelated CLB CLB BLE LUT Pair
FPGA-1 115 1 2 3 9 1 5 26 22 1 185
FPGA-2 187 2 4 4 17 1 8 38 42 2 305
FPGA-3 528 5 12 13 58 1 28 57 120 9 831
FPGA-4 500 6 12 17 56 2 33 61 127 10 824
FPGA-5 663 7 13 23 77 3 41 67 136 11 1041
FPGA-6 1029 8 44 171 101 30 49 77 197 15 1721
FPGA-7 974 9 52 195 126 19 54 81 205 16 1731
FPGA-8 1004 9 26 39 91 16 49 174 274 4 1686
FPGA-9 1217 13 100 538 119 41 60 116 314 19 2537

FPGA-10 1343 11 65 1154 95 59 60 148 229 18 3182
FPGA-11 1248 12 50 133 115 23 55 203 308 4 2151
FPGA-12 1720 12 66 279 116 107 54 226 346 18 2944

Norm. 55.0% 0.5% 2.3% 13.4% 5.1% 1.6% 2.6% 6.7% 12.1% 0.7% 100.0%

FPGA benchmarks. Note that several benchmarks have ex-
tremely high cell utilization, which raises two requirements
to FPGA placement packing and placement engines: 1) the
capability to yield tight packing solutions to satisfy the CLB
capacity constraint, and 2) the capability to reduce routing
resource demand, since little white space is available for cell
and routing demand spreading.

B. Comparison with Previous Works

We compare our results with the top 3 winners of ISPD’16
placement contest and other state-of-the-art FPGA placers.
The results are shown in Table II and Table III. All routed
wirelength are reported by Xilinx Vivado v2015.4, and run-
time of the contest winners are evaluated on a Linux Machine
with 3.20 GHz CPU and 32GB RAM. Normalized results in
the last row of Table II and Table III are based on comparisons

TABLE V: Routed Wirelength at Different Stages of the Congestion-Aware Hierarchical Independent Set Matching
Benchmark Post Legalization Post CLB ISM Post BLE ISM Post LUT-Pair ISM

Routed WL Routed WL Routed WL Routed WL
FPGA-1 406555 394462 359273 356769
FPGA-2 702458 676831 646553 642108
FPGA-3 3339112 3264313 3236204 3215087
FPGA-4 5602968 5484237 5433021 5409765
FPGA-5 9908463 9696556 9641323 9659958
FPGA-6 6823796 6685567 6613140 6487628
FPGA-7 10499688 10322086 10252708 10104837
FPGA-8 8155719 7992101 7913338 7879022
FPGA-9 13181397 12936690 12834049 12369055

FPGA-10 9916422 9633335 9284655 8794515
FPGA-11 10687229 10332421 10306784 10196038
FPGA-12 8479546 8208020 7956163 7755443

Norm. +0.0% -2.4% -3.7% -5.5%

with our results, and only benchmarks that other placers
completed are considered in each comparison. It can be seen
that UTPlaceF achieves the best overall routed wirelength.
On average UTPlaceF outperforms by 6.2%, 11.6%, 29.1%,
3.7%, 7.3%, and 16.8% in routed wirelength compared with
the top 3 contest winners, [26], RippleFPGA [27], and GPlace
[28] respectively. It should be noted that only UTPlaceF and
RippleFPGA are able to route all 12 benchmarks. In terms of
runtime, as all placers are evaluated on different machines, it
is not fair to compare them directly. However, we still can
see that the runtime of UTPlaceF is only worse than GPlace,
and is about 1.5× to 3.1× faster than other placers.

C. Runtime Analysis
The runtime breakdown of UTPlaceF is shown in Table IV.
On average, 55.0% of the total runtime is taken by FIP, while
PCAP, global placement, and hierarchical ISM respectively
take 16.2%, 5.1% and 21.4% of the total runtime, and
legalization only takes 1.6% of the total runtime. PCAP is
further divided into three components: BLE packing takes
0.5% of the total runtime, related CLB packing takes 2.3%
of the total runtime, and the remaining 13.4% is taken by the
unrelated CLB packing. In hierarchical ISM, CLB, BLE, and
LUT-pair level ISM respectively take 2.6%, 6.7%, and 12.1%
of the total runtime.

D. Congestion-Aware Hierarchical Independent Set Matching
Effectiveness Validation

To show the effectiveness of our proposed congestion-aware
hierarchical ISM, we compared the routed wirelength of the
intermediate placement solution after each ISM steps. Table V
summarizes the experimental results. Compared with post-
legalization solutions, placements after CLB ISM, BLE ISM,
and LUT-Pair ISM are 2.4%, 3.7%, and 5.5% shorter in routed
wirelength, respectively.

VII. CONCLUSION

With the utilization of FPGA designs being pushed to the up-
per limit, routability optimization is becoming a fundamental
issue in modern physical design flow for FPGA. In this paper,
we have proposed a routability-driven FPGA packing and
placement engine called UTPlaceF. A novel packing algorithm
PCAP and a congestion-aware detailed placement techniques
for wirelength and routability co-optimization are proposed.

The experimental results show that UTPlaceF achieves high-
quality packing and placement solutions, which outperform
the top 3 winners of the ISPD’16 placement contest and
other state-of-the-art FPGA placers. Our future work includes
two directions: 1) exploring techniques to parallelize and
speed up UTPlaceF framework, and 2) enhancing UTPlaceF
to accommodate more complicated placement and packing
constraints imposed by modern FPGA architectures, e.g.,
clock network and I/O block constraints.

REFERENCES

[1] Xilinx Inc., http://www.xilinx.com, accessed: 2017-03-17.
[2] V. Betz and J. Rose, “Cluster-based logic blocks for FPGAs: area-

efficiency vs. input sharing and size,” in IEEE Custom Integrated
Circuits Conference (CICC), 1997, pp. 551–554.

[3] A. S. Marquardt, V. Betz, and J. Rose, “Using cluster-based logic blocks
and timing-driven packing to improve FPGA speed and density,” in
ACM Symposium on FPGAs, 1999, pp. 37–46.

[4] E. Bozorgzadeh, S. Ogrenci-Memik, and M. Sarrafzadeh, “RPack:
routability-driven packing for cluster-based FPGAs,” in IEEE/ACM Asia
and South Pacific Design Automation Conference (ASPDAC), 2001, pp.
629–634.

[5] A. Singh, G. Parthasarathy, and M. Marek-Sadowska, “Efficient circuit
clustering for area and power reduction in FPGAs,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 7, no. 4,
pp. 643–663, 2002.

[6] H. Liu and A. Akoglu, “Timing-driven Nonuniform Depopulation-based
Clustering,” International Journal of Reconfigurable Computing, Article
3, 2010.

[7] S. T. Rajavel and A. Akoglu, “MO-Pack: Many-objective clustering for
FPGA CAD,” in ACM/IEEE Design Automation Conference (DAC),
2011, pp. 818–823.

[8] Z. Marrakchi, H. Mrabet, and H. Mehrez, “Hierarchical FPGA cluster-
ing based on a multilevel partitioning approach to improve routability
and reduce power dissapation,” in International Conference on Recon-
figurable Computing and FPGAs (ReConFig), 2005, pp. 25–28.

[9] W. Feng, “K-way partitioning based packing for FPGA logic blocks
without input bandwidth constraint,” in IEEE International Conference
on Field-Programmable Technology (FPT), 2012, pp. 8–15.

[10] D. T. Chen, K. Vorwerk, and A. Kennings, “Improving timing-driven
FPGA packing with physical information,” in IEEE International Con-
ference on Field Programmable Logic and Applications (FPL), 2007,
pp. 117–123.

[11] K. Vorwerk and A. Kennings, “An improved multi-level framework for
force-directed placement,” in IEEE/ACM Proceedings Design, Automa-
tion and Test in Eurpoe (DATE), 2005, pp. 902–907.

[12] R. Tessier and H. Giza, “Balancing logic utilization and area efficiency
in FPGAs,” in IEEE International Conference on Field Programmable
Logic and Applications (FPL), 2000, pp. 535–544.

[13] M. Tom and G. Lemieux, “Logic block clustering of large designs for
channel-width constrained FPGAs,” in ACM/IEEE Design Automation
Conference (DAC), 2005, pp. 726–731.

http://www.xilinx.com

[14] M. Tom, D. Leong, and G. Lemieux, “Un/DoPack: re-clustering of
large system-on-chip designs with interconnect variation for low-cost
FPGAs,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2006, pp. 680–687.

[15] V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” in IEEE International Conference on Field
Programmable Logic and Applications (FPL), 1997, pp. 213–222.

[16] G. Chen and J. Cong, “Simultaneous timing driven clustering and place-
ment for fpgas,” IEEE International Conference on Field Programmable
Logic and Applications (FPL), pp. 158–167, 2004.

[17] ——, “Simultaneous placement with clustering and duplication,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 11, no. 3, pp. 740–772, 2006.

[18] P. Maidee, C. Ababei, and K. Bazargan, “Fast timing-driven
partitioning-based placement for island style FPGAs,” in ACM/IEEE
Design Automation Conference (DAC), 2003, pp. 598–603.

[19] ——, “Timing-driven partitioning-based placement for island style
FPGAs,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 24, no. 3, pp. 395–406, 2005.

[20] Y. Xu and M. A. Khalid, “QPF: efficient quadratic placement for
FPGAs,” in IEEE International Conference on Field Programmable
Logic and Applications (FPL), 2005, pp. 555–558.

[21] P. Gopalakrishnan, X. Li, and L. Pileggi, “Architecture-aware FPGA
placement using metric embedding,” in ACM/IEEE Design Automation
Conference (DAC), 2006, pp. 460–465.

[22] M. Xu, G. Gréwal, and S. Areibi, “StarPlace: A new analytic method
for FPGA placement,” Integration, the VLSI Journal, vol. 44, no. 3, pp.
192–204, 2011.

[23] M. Gort and J. H. Anderson, “Analytical placement for heterogeneous
FPGAs,” in IEEE International Conference on Field Programmable
Logic and Applications (FPL), 2012, pp. 143–150.

[24] T.-H. Lin, P. Banerjee, and Y.-W. Chang, “An efficient and effective
analytical placer for FPGAs,” in ACM/IEEE Design Automation Con-
ference (DAC), 2013, pp. 10:1–10:6.

[25] Y.-C. Chen, S.-Y. Chen, and Y.-W. Chang, “Efficient and effective pack-
ing and analytical placement for large-scale heterogeneous FPGAs,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2014, pp. 647–654.

[26] W. Li, S. Dhar, and D. Z. Pan, “UTPlaceF: A routability-driven FPGA
placer with physical and congestion aware packing,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2016,
pp. 66:1–66:7.

[27] C.-W. Pui, G. Chen, W.-K. Chow, K.-C. Lam, J. Kuang, P. Tu, H. Zhang,
E. F. Young, and B. Yu, “RippleFPGA: A routability-driven placement
for large-scale heterogeneous FPGAs,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2016, pp. 67:1–67:8.

[28] R. Pattison, Z. Abuowaimer, S. Areibi, G. Gréwal, and A. Vannelli,
“GPlace: A congestion-aware placement tool for ultrascale FPGAs,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2016, pp. 68:1–68:7.

[29] ISPD 2016 Routability-Driven FPGA Placement Contest, http://www.
ispd.cc/contests/16/ispd2016 contest.html, accessed: 2017-03-17.

[30] T. Lin and C. C. Chu, “POLAR 2.0: An effective routability-driven
placer,” in ACM/IEEE Design Automation Conference (DAC), 2014,
pp. 1–6.

[31] M.-C. Kim, D.-J. Lee, and I. L. Markov, “SimPL: An Effective
Placement Algorithm,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 31, no. 1, pp. 50–60,
2012.

[32] T. Lin, C. C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev,
“POLAR: Placement based on novel rough legalization and refinement,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2013, pp. 357–362.

[33] W.-H. Liu, Y.-L. Li, and C.-K. Koh, “A fast maze-free routing conges-
tion estimator with hybrid unilateral monotonic routing,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2012,
pp. 713–719.

[34] G.-J. Nam, S. Reda, C. J. Alpert, P. G. Villarrubia, and A. B. Kahng,
“A fast hierarchical quadratic placement algorithm,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 25, no. 4, pp. 678–691, 2006.

[35] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., 1993.

[36] T. C. Chen, Z. W. Jiang, T. C. Hsu, H. C. Chen, and Y. W. Chang,
“NTUplace3: An analytical placer for large-scale mixed-size designs
with preplaced blocks and density constraints,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 27, no. 7, pp. 1228–1240, 2008.

Wuxi Li received the B.S. degree in microelec-
tronics from Shanghai Jiao Tong University, Shang-
hai, China, in 2013. He is currently pursuing
the Ph.D. degree at the Department of Electrical
and Computer Engineering, University of Texas
at Austin. His research interests include physical
design automation for FPGAs.

He was a recipient of the 1st-place awards in the
FPGA placement contests of ISPD 2016 and 2017.

Shounak Dhar received his B.Tech. degree in
Electrical Engineering from IIT Bombay in 2014.
He is currently pursuing the Ph.D. degree at the De-
partment of Electrical and Computer Engineering,
University of Texas at Austin. His research interests
include placement, routing and CAD for FPGAs. He
has published two first author papers and holds one
US patent.

He was a recipient of the 1st-place award in the
FPGA placement contest of ISPD 2016.

David Z. Pan David Z. Pan (S97M00SM06F14)
received his B.S. degree from Peking University,
and his M.S. and Ph.D. degrees from University
of California, Los Angeles (UCLA). From 2000
to 2003, he was a Research Staff Member with
IBM T. J. Watson Research Center. He is currently
the Engineering Foundation Professor at the De-
partment of Electrical and Computer Engineering,
The University of Texas at Austin. His research
interests include cross-layer nanometer IC design
for manufacturability, reliability, security, physical

design, analog design automation, and CAD for emerging technologies. He
has published over 280 technical papers, and is the holder of 8 U.S. patents.
He has graduated 21 PhD students who are now holding key academic and
industry positions.

He has served as a Senior Associate Editor for ACM Transactions on
Design Automation of Electronic Systems (TODAES), an Associate Editor
for IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems (TCAD), IEEE Transactions on Very Large Scale Integration Sys-
tems (TVLSI), IEEE Transactions on Circuits and Systems PART I (TCAS-I),
IEEE Transactions on Circuits and Systems PART II (TCAS-II), IEEE Design
& Test, Science China Information Sciences, Journal of Computer Science
and Technology, IEEE CAS Society Newsletter, etc. He has served in the
Executive and Program Committees of many major conferences, including
DAC, ICCAD, ASPDAC, and ISPD. He is the ASPDAC 2017 Program
Chair, ICCAD 2018 Program Chair, DAC 2014 Tutorial Chair, and ISPD
2008 General Chair.

He has received a number of awards for his research contributions,
including the SRC 2013 Technical Excellence Award, DAC Top 10 Author
in Fifth Decade, DAC Prolific Author Award, ASP-DAC Frequently Cited
Author Award, 14 Best Paper Awards at premier venues (HOST 2017, SPIE
2016, ISPD 2014, ICCAD 2013, ASPDAC 2012, ISPD 2011, IBM Research
2010 Pat Goldberg Memorial Best Paper Award, ASPDAC 2010, DATE
2009, ICICDT 2009, SRC Techcon in 1998, 2007, 2012 and 2015) plus 11
additional Best Paper Award nominations at DAC/ICCAD/ASPDAC/ISPD,
Communications of the ACM Research Highlights (2014), ACM/SIGDA
Outstanding New Faculty Award (2005), NSF CAREER Award (2007), SRC
Inventor Recognition Award three times, IBM Faculty Award four times,
UCLA Engineering Distinguished Young Alumnus Award (2009), UT Austin
RAISE Faculty Excellence Award (2014), and many international CAD
contest awards, among others. He is a Fellow of SPIE.

http://www.ispd.cc/contests/16/ispd2016_contest.html
http://www.ispd.cc/contests/16/ispd2016_contest.html

