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A New Paradigm for FPGA Placement without
Explicit Packing

Wuxi Li, Student Member, IEEE, and David Z. Pan, Fellow, IEEE

Abstract—Placement and packing are two important but sepa-
rated optimization steps in a conventional FPGA implementation
flow. A packing engine clusters logic elements, like lookup
tables (LUTs) and flip-flops (FFs), into configurable logic blocks
(CLBs), while a placement engine determines their physical
locations in FPGA layouts. This paper presents a new paradigm
for FPGA placement without an explicit packing stage. In the
proposed framework, the solution spaces of placement and
packing are simultaneously explored in a smooth and elegant
way. Our experiments on ISPD 2016 and 2017 benchmark suites
demonstrate the effectiveness of the proposed framework.

Index Terms—Placement, Legalization, Packing, FPGA, Par-
allel Algorithm

I. INTRODUCTION

The Field Programmable Gate Array (FPGA)-based de-
signs are becoming increasingly attractive for their recon-
figurability, shorter time-to-market, and lower non-recurring
engineering costs. Beyond the success of FPGAs in traditional
applications like fast Application Specific Integrated Circuits
(ASICs) prototyping, FPGAs have also demonstrated their
applicability as hardware accelerators in modern applications,
such as machine learning, deep learning, and data center.

The advance of FPGA-based designs and applications is
inseparable from the support of FPGA CAD. In a traditional
FPGA CAD flow, logic synthesis and technology mapping
translate a design into a netlist consisting of lookup tables
(LUTs), flip-flops (FFs), digital signal processors, block ran-
dom access memories, and I/Os. Then, a packing engine
clusters LUTs and FFs successively into architecture-legal
basic logic elements (BLEs) and configurable logic blocks
(CLBs). After that, placement determines the physical lo-
cations of these CLBs, followed by routing to finalize the
implementation flow.

Given the significance of FPGA placement and packing in
determining the overall implementation quality and efficiency,
lots of research efforts have been devoted to them over the
past two decades. Figure 1 summarizes several representative
placement and packing flows in previous works. In the early
age of FPGAs, Pack-Place-Legalize flows (the red path), such
as [1]–[9], dominate industry and academic research. In this
type of flow, the packing solution is first determined based on
logical interconnects, then the placement and legalization are
performed successively to produce a legal solution. Despite
the efficiency, Pack-Place-Legalize flows do not incorporate
placement/spatial information during their packing decision

This work was supported in part by Xilinx Inc.
The authors are with The Department of Electrical and Computer

Engineering, The University of Texas at Austin, TX, USA. (e-mails:
wuxi.li@utexas.edu; dpan@ece.utexas.edu)

LUT/FF

BLE

CLB

Netlist Global Placement Legal Solution

Pack-Place-Legalize Place-SemiPack-Legalize
Place-Pack-Place-Legalize Place-Legalize (Ours)

Placement Legality

Low

High

Pa
ck

in
g 

Le
ga

lit
y

HighLow

Fig. 1: Representative FPGA placement and packing flows.

making, thus are likely to cause poor design quality. Place-
Pack-Place-Legalize flows (the blue path) then emerged as a
remedy to this issue [10]–[13]. In such a flow, a flat initial
placement (FIP) is first performed. Then, both logical and
spatial information is considered during the packing stage
before the final placement and legalization. Another category
of flows, namely Place-SemiPack-Legalize flows (the orange
path), blur the boundary between placement and packing [14],
[15]. In particular, after a FIP similar to that in Place-Pack-
Place-Legalize flows, they only group LUTs and FFs into
intermediate clusters (e.g., BLEs). Then, the rest of packing
work and the final placement are combined into a single
legalization process.

Among all these methodologies, Place-Pack-Place-Legalize
flows (the blue path) currently dominate the state-of-the-art in-
dustrial FPGA CAD tools [11]. However, large discrepancies
between FIP solutions and final legal solutions can still be
observed, which implies that metrics, like wirelength, timing,
and routability, that are carefully optimized in FIPs can be
ruined in final legal solutions. The reason is usually twofold.
Firstly, most existing FIP techniques only seek to optimize
the placement without considering the effect of packing.
As a result, large perturbations can be introduced in the
later packing stage, especially for those hard-to-pack designs.
Secondly, when forming a BLE/CLB in the packing stage, its
location is typically estimated by the average location of its
containing cells, which, however, can be far away from its
final legal position.

To remedy the aforementioned deficiencies in previous
works, we propose a new paradigm for FPGA placement



without explicit packing. We call it Place-Legalize flow. As
shown in Fig. 1, in the proposed flow (the green path),
a final legal solution can be achieved directly from a FIP
by incorporating the previously separated packing and final
placement/legalization steps. Our experiments show that the
overall implementation quality, as well as the correlation
between FIPs and final legal solutions, can be significantly
improved with the proposed flow. The major contributions of
this paper are highlighted as follows:
• We present a new paradigm for FPGA placement without

an explicit packing stage, which is drastically differ-
ent from the conventional placement and packing ap-
proaches.

• We propose an accurate packing estimation model to
incorporate the effect of packing in the flat initial place-
ment (FIP), which significantly improves the correlation
between FIPs and final legal solutions compared with the
previous state-of-the-art.

• We propose a fully parallelizable direct legalization
technique that can produce legal solutions straightly from
FIPs by simultaneously exploring the solution spaces of
placement and packing.

• Our approach outperforms the winners of ISPD 2016
contest as well as three state-of-the-art academic placers
UTPlaceF [12], RippleFPGA [14], and GPlace [16] in
routed wirelength with competitive runtime on ISPD
2016 benchmark suite [17].

The rest of this paper is organized as follows. Section II
reviews the FPGA architecture and quadratic placement, and
formally defines the problem of direct legalization. In Sec-
tion III, we point out the inherent challenges of the proposed
Place-Legalize flow. Section IV details our proposed algo-
rithms. Section V shows the experimental results, followed
by the conclusion and future work in Section VI.

II. PRELIMINARIES

A. FPGA Architecture
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Fig. 2: CLB and BLE in Xilinx UltraScale architecture.

We adopt the Xilinx UltraScale VU095 [18] used in the
ISPD 2016 FPGA placement contest [17] as the target FPGA
device1. Its BLE and CLB architectures are shown in Fig. 2.
In this particular architecture, a CLB slice consists of 8 BLEs
and each BLE further contains 2 LUTs and 2 FFs. The 2 LUTs

1We adopt this architecture because it is the only modern FPGA
architecture that has public benchmarks, but our new paradigm can be easily
adapted to other architecture as well.

in a BLE can be either implemented as a single 6-input LUT
or 2 smaller LUTs with a total number of distinct inputs no
greater than 5. The 2 FFs in a BLE must share the same
clock (CK) and set/reset (SR) signals, however, their clock
enable (CEA and CEB) signals can be different. A CLB can
be divided into two half CLBs, each of which consists of 4
BLEs that share the same set of CK, SR, CEA, and CEB.

In the rest of this paper, we will use “control set” to denote
the tuple of (CK, SR, CE) for a FF (CE here is the CEA/CEB
of FF A/B in Fig. 2) and the tuple of (CK, SR, CEA, CEB)
for a CLB.

B. Quadratic Placement

An FPGA netlist can be represented as a hypergraph H =
(V, E), where V is the set of cells, and E is the set of nets.
Let x = {x1, x2, ..., x|V|} and y = {y1, y2, ..., y|V|} be the
x and y coordinates of all cells. The placement problem is
to determine cell locations such that the total half-perimeter
wirelength (HPWL) defined in Eq. (1) is minimized.

HPWL(x,y) =
∑
e∈E

[max
i,j∈e

|xi − xj |+ max
i,j∈e

|yi − yj |]. (1)

Quadratic placers approximate the HPWL by squared Eu-
clidean distance between cells using various net models, such
as hybrid net model [19] and bound-to-bound (B2B) net
model [20]. Thus, quadratic placers minimize the wirelength
cost function defined as

W (x,y) =
1

2
xTQxx+cTxx+

1

2
yTQyy+cTy y+const. (2)

To eliminate cell overlapping, most state-of-the-art
quadratic placers [12], [14], [21]–[23] adopted the idea of
rough legalization [24]. The final placement solution can
be obtained by iteratively solving the quadratic program in
Eq. (2) and performing rough legalization until cells are fully
spread out.

C. The FPGA Direct Legalization Problem

TABLE I: Notations used in the direct legalization problem

V The set of LUTs and FFs

S The set of CLB slices available on the target
FPGA device

x′,y′ The x and y coordinates of cells in V in FIP

x,y
The x and y coordinates of cells in V in the
final legal solution

zv,s
Binary variables that represent if cell v ∈ V is
assigned to CLB slice s ∈ S

φ(c) The clustering score of a set of LUTs and FFs c
D The cell maximum displacement constraint

In our Place-Legalize flow, the direct legalization (DL) is a
step that produces a legal solution directly from a FIP. Given
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Fig. 3: (a) An area overflow-free placement but with FF de-
mand overflow (the shaded red region). (b) A legal placement.

the notations defined in Table I, the FPGA DL problem can
be defined as follows:

max
x,y

∑
s∈S

φ({v ∈ V | zv,s = 1})− λ · HPWL(x,y), (3a)

s.t.
∑
s∈S

zv,s = 1,∀v ∈ V, (3b)

{v | v ∈ V, zv,s = 1} is arch. legal,∀s ∈ S, (3c)
|xv − x′v|+ |yv − y′v| ≤ D,∀v ∈ V. (3d)

The objective (3a) is to maximize the total clustering score∑
s∈S φ({v ∈ V | zv,s = 1}) and minimize a wirelength term

λ · HPWL(x,y) normalized by a positive parameter λ. The
clustering score function φ(c) typically captures the pin/net
sharing, timing impact, and so on, within each CLB slice, like
affinity functions used in conventional packing algorithms [3],
[5], [8]. In general, φ(c) can be customized for different
optimization targets. The details of the objective setting used
in our framework will be elaborated in Section IV-C4. The
constraint (3b) guarantees that each LUT and FF is assigned
to one and only one CLB slice. The constraint (3c) assures that
all the architecture rules stated in Section II-A are satisfied.
The maximum displacement constraint (3d) is introduced to
better preserve the FIP. We treat (3d) as a soft constraint, since
a legal solution may not always exist for a given D.

Unlike previous approaches, our DL formulation guarantees
both placement and packing legality while optimizing the ob-
jective (3a). Besides, the maximum displacement is explicitly
considered. It is, however, much harder to be dealt with in
traditional methods (e.g., Place-Pack-Place-Legalize flow).

III. CHALLENGES OF PLACE-LEGALIZE FLOW

Although Place-Legalize flows have lots of potential merits,
there are several new challenges come into the field with it.

To achieve a smooth DL process, the FIP needs to be
as near as possible to a legal solution. Otherwise, the final
legal solution cannot be obtained with a small placement
perturbation. In a FIP, each cell is associated with an area,
and the final FIP solution heavily depends on the cell area
assignment. Therefore, a proper cell area assignment is essen-
tial for achieving a reasonably legal FIP. In most of previous
works, cell areas were set statically based on some empirical
estimations [14], [16]. However, the area of a cell should
be largely determined by its resource demand, which is, in
fact, determined by its packing solution. For example, if a FF

occupies (the FF portion of) a half CLB slice alone in the final
solution due to the control set conflict, it should be assigned
a larger area in the FIP. Considering packing solutions are not
actually available in FIPs, how to model the effect of packing
in cell area assignment is indeed a challenge.

Another important problem in FIP is how to properly dis-
tribute cells of different types. In quadratic placers, to achieve
a rough-legal placement, overlapping removal techniques
(e.g., rough legalization) distribute cells by evening out area
demand throughout the layout. However, an area overflow-free
placement can be far away from a truly legal solution, since
the area metric alone cannot capture utilizations of different
cell types. This issue can be better illustrated in Fig. 3. Here
the LUT and FF area demands (the blue curve and the red
curve) represent the numbers of CLBs required by LUTs and
FFs, respectively, in different locations. The CLB capacity
(the lower dashed line) represents the numbers of CLB slices
available in each location, and the area capacity (the upper
dashed line) is the maximum LUT + FF area constraint used
by the placers. In Fig. 3(a), despite the satisfaction of the
LUT + FF area constraint, large displacement will still be
introduced in the later legalization step due to the FF demand
overflow (the shaded red region). Figure 3(b) gives a legal
case where both LUT and FF demands are lower than the
CLB capacity. This issue, of course, can be avoided by over-
constraining the area capacity, but at the cost of resource
wasting.

To legalize a placement, many previous works adopted
Tetris-like approaches [25]. In such a greedy approach, only
one cell/cluster is considered and legalized at a time, which
leads to a narrow solution space exploration. To explore
a broader solution space, however, much more expensive
computational effort is typically required. The scalability issue
is even more severe in the Place-Legalize flow, since the
flat netlist without any pre-clustering is directly considered.
Therefore, how to explore a sufficently large solution space
while maintaining good runtime scalability is also a challenge
for the Place-Legalize flow.

To sum up, there are several issues discussed in this section
that need to be resolved before we can confidently adopt the
Place-Legalize flow. No existing work has considered these
issues, therefore, how to overcome them is a major challenge
of this work.

IV. PROPOSED ALGORITHMS

A. Overall Flow

The proposed overall flow is illustrated in Fig. 4. The
whole flow starts with a flat initial placement (FIP). Besides
the conventional quadratic program solving and rough le-
galization, a new dynamic LUT/FF area adjustment step is
performed after each placement iteration. This new step is
aiming at resolving the two FIP-related issues pointed out
in Section III. More specifically, the area of each LUT and
FF is dynamically adjusted to account for the impact of both
packing and utilizations of different cell types. Once the FIP
converges to a roughly legal solution, a high-quality legal
placement can be straightly produced by the parallel direct
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Fig. 4: The proposed overall flow.

legalization, in which the Formulation (3a) – (3d) is solved.
The detailed placement then conducts further optimization on
the legal placement before the final solution is delivered.

As the centerpieces of this work, the dynamic LUT/FF area
adjustment and the parallel direct legalization techniques will
be detailed in Section IV-B and Section IV-C, respectively.

B. Dynamic LUT/FF Area Adjustment

Since packing and cell utilization calculation are both very
local-scoped in nature, it is reasonable to analyze them in
a small spatial neighborhood contexts for each cell. Ad-
ditionally, considering that cells of different types do not
affect the packing legality or compete for logic resources
against each other, it is also reasonable to consider each cell
type individually from the perspective of solution legality.
Therefore, the area of each cell can be largely determined
based on its spatial neighbors of the same type.

In this section, a cell u is said to be a neighbor of a cell
v if u and v have the same cell type and u falls into the
box region (xv − L, yv − L, xv + L, yv + L) centering at v,
where (xv , yv) is the location of v and L is a constant being
empirically set to 5 CLB slices in our framework. In the rest
of this section, we will use Nv to denote the set of neighbors
of v, and use N+

v to denote {v} ∪ Nv .
1) Area Updating: To determine a cell area, the following

three aspects are considered in our framework: (1) the cell
resource demand, (2) the local resource utilization, and (3)
the routability impact. As discussed in Section III, the re-
source demand of a cell is mainly determined by its packing
solution, so the effect of packing is our major consideration
here. Besides, the local resource utilization also needs to be
considered and, as pointed out in Section III, this should be
done for different cell types (e.g., LUT and FF) individually.
We also take the routability impact into consideration to avoid
over-congested solutions.

Given a LUT (FF) v, we first define the local LUT (FF)
utilization at v, denoted by Uv , as follows:

Uv =

∑
i∈N+

v
Ai

Cv
, (4)

where Cv denotes the number of CLB slices within the box
region (xv − L, yv − L, xv + L, yv + L) we used to define
Nv , and Ai denotes the LUT (FF) resource demand of the
cell i. The magnitude of Ai here can also be interpreted as

the degree of difficulty to pack i. The methods to compute Ai

for LUTs and FFs will be detailed in Section IV-B2 (Eq. (6))
and Section IV-B3 (Eq. (7)), respectively.

We then define the new area of v, denoted by av , as follows:

av =


min(a′vβ+, AvUvγv), if AvUvγv > a′v,

max(a′vβ−, AvUvγv), if AvUvγv < a′v and
Rv < Rmax,

a′v, otherwise,

(5)

where a′v denotes the current area of v, γv ≥ 1 denotes the
cumulative inflation ratio of v for routability optimization,
Rv denotes the local routing utilization at v, and Rmax is an
empirically determined constant representing the maximum
routing utilization for area shrinking. Besides, β+ > 1 and
β− < 1 are two parameters to control the rates of area
increasing/decreasing.

Intuitively, if a LUT (FF) v is hard to pack (large Av) and is
located in a region with high LUT (FF) utilization (large Uv),
as well as high routing congestion (large γv), its area will be
inflated. Otherwise, we will shrink its area to allow other cells
to get in, but only when the region is not routing-congested
(Rv < Rmax). To achieve a smooth area adjustment, β+ and
β− are set to 1.1 and 0.95, respectively. The γv is cumulatively
updated using a history-based cell inflation technique similar
to [12], [14]. The routing congestion is estimated by a fast
global router NCTUgr [26], and Rmax is empirically set to
0.65 in our framework. The impacts of different β+, β−, and
Rmax settings on the solution quality will be further discussed
in Section V-B.

In the proposed flow, we perform rough legalization for
LUTs and FFs together using the same fence regions to
maintain the relative order between them. Considering LUTs
and FFs do not occupy the same logic resources, adjusting
their areas directly targeting to their resource demand Av

(Eq. (6) and Eq. (7)) can result in low resource usage. This
issue is prevented by scaling Av using the local resource
utilization Uv in Eq. (5). By doing so, cells in low-utilization
regions will be assigned areas that are much smaller than their
actual resource demand to leave spaces for other cells.

Our dynamic area adjustment technique can effectively mit-
igate the “unbalanced resource issue” illustrated in Fig. 3, and
resolve “packing hotspots” that are harmful to the smoothness
of the subsequent direct legalization process. Figure 5 shows
the LUT/FF utilization (Eq. (4)) maps of a design with/without
this technique when area constraint is satisfied (see Fig. 3).
It can be seen that, with this technique, a huge FF hotspot
(Fig. 5(b)) is resolved (Fig. 5(d)). More interestingly, the
LUTs that are original in the FF hotspot (Fig. 5(a)) tend to
follow the movement of their connected FFs, which results in
a “valley” (Fig. 5(c)). This is actually an expected behavior,
since it implicitly preserves the relative cell ordering, which
is important for the placement quality.

2) LUT Resource Demand Estimation: Now we present the
method to estimate the resource demand (the Ai in Eq. (4))
of a LUT, or more precisely, the amount of LUT portion in a
CLB needed by a given LUT. Recall that, in the target device,
each CLB contains 8 BLEs and each BLE can accommodate
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Fig. 5: (a) and (b) are the 3-D LUT and FF utilization (Eq. (4)) maps without our dynamic area adjustment. (c) and (d) are
the ones with it applied. The area constraint is satisfied in both placement solutions. This is an example of the challenging
case illustrated in Fig. 3. The experiments are based on design FPGA-10 in ISPD 2016 benchmark suite [17].

up to 2 LUTs if they are architecturally compatible. Therefore,
each LUT can take 1 or 1/2 BLE, which are equivalent to 1/8
and 1/16 CLB in a compact packing solution. Considering a
packing solution is not yet available in a FIP, a probabilistic
estimation defined in Eq. (6) is used instead for a LUT v with
its neighbors Nv .

A(LUT)
v =

|N̂v|
|Nv|

· 1

16
+
|Nv| − |N̂v|
|Nv|

· 1

8
, (6)

where N̂v denotes the set of LUTs inNv that can be fitted into
the same BLE with v. Intuitively, if a LUT is architecturally
compatible with most of its neighbors, its resource demand
will tend to be small, otherwise, it will end up with a larger
resource demand.

3) FF Resource Demand Estimation: The resource demand
(the Ai in Eq. (4)) estimation for FFs is more subtle due
to their complicated control set rules. Given a FF v, one
can, of course, enumerate all possible packing solutions of
N+

v and come up with a weighted sum similar to Eq. (6) to
get an average-case estimation. However, this method is too
computationally expensive to be practical. Instead, we turn to
a best-case estimation based on the tightest packing solution,
which can provide us a firm lower bound of the FF resource
demand.

For the notation simplicity, here we define every 4 FFs that
share the same (CK, SR, CE) in a CLB slice as a quarter
CLB2, and define every 8 FFs that share the same (CK, SR)
in a CLB slice as a half CLB2. For instance, in Fig. 2, the
4 “FF A”s in BLE 0 – 3 is a quarter CLB and the 8 FFs in
BLE 0 – 3 is a half CLB.

An instant observation is that, to produce the tightest
packing solution, FFs with the same control set need to be
packed together as much as possible. Given this observation,
our approach to estimate the lower-bound FF demands can
be illustrated by Fig. 6. Using the (CK, SR) group of (B, P)
in Fig. 6 as an example, there are 5 and 2 FFs with CE of
X and Z. In the tightest packing solution, at least d5/4e = 2
and d2/4e = 1 quarter CLBs are required for the control sets
(B, P, X) and (B, P, Z). Since any two of these 2 + 1 = 3
quarter CLBs can be fitted into the same half CLB, there
will be a minimum of d3/2e = 2 half CLBs for the (B, P)

2The quarter/half CLBs here only contain FFs, since LUTs are irrelevant
in this subsection.

group. Considering the control sets of any two half CLBs
are independent, we can safely set the resource demand of
each half CLB as 1/2 (of a CLB). Therefore, the minimum
demand of the (B, P) group will be 1/2 · 2 = 1. After that,
we can divide this demand of 1 into 2/(2 + 1) = 2/3 and
1/(2 + 1) = 1/3 based on the quarter CLB counts in (B, P,
X) and (B, P, Z). Finally, the resource demands of each FF in
(B, P, X) and (B, P, Z) can be estimated as 2/3/5 = 2/15 and
1/3/2 = 1/6, respectively, by evenly distributing the demand
of 2/3 and 1/3 to 5 and 2 FFs.

To generalize the above discussion, let v be a FF with
control set (CK0, SR0, CE0), and let {CE0, CE1, . . . , CEm}
be the set of CE nets in N+

v . If we denote the number of
FFs in N+

v with the control set (CK0, SR0, CEi) as ni, for
0 ≤ i ≤ m, the estimated FF demand of v can be expressed
as follows:

A(FF)
v =

1

2
· dn0

4 e∑m
i=0dni

4 e
·
⌈∑m

i=0dni

4 e
2

⌉
· 1

n0
· α(FF). (7)

Note that our analysis in Fig. 6 corresponds to the tightest
packing, which realizes the lower bound FF demands. In
practice, however, a packing solution is likely to be looser
than that when considering net sharing and other optimization
metrics. Therefore, we introduce α(FF) ≥ 1 in Eq. (7) to
give more flexibility to the packing. In our framework, we
empirically set α(FF) to 1.1.

If we ignore the α(FF) term, the FF demand estimated by
Eq. (7) is in the range [1/16, 1/2], which implies that FF
demands can vary up to 8× (e.g., the FF demands of (A,
P, Z) and (B, Q, Y) in Fig. 6). In a traditional flow, the
discrepancy between FIPs and legal solutions is mainly from
their incapability of capturing this large demand variance, as
shown in Fig. 5. Therefore, our FF demand estimation method
detailed in this section is essential for the proposed Place-
Legalize flow.

It is worthwhile to mention that, although the LUT/FF
resource demand estimations elaborated in Section IV-B2 and
Section IV-B3 are specific to the architecture detailed in
Section II-A, the same idea is also applicable to other FPGA
devices with different architectures.

4) Area Adjustment Scheduling: Another important ques-
tion needs to be answered is when to start the area adjustment.
There is a trade-off between the area estimation accuracy
(Eq. (6) and Eq. (7)) and the required area adjustment rates. In
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Fig. 6: Illustration of FF resource demand estimation.

general, the later we start the dynamic area adjustment in the
FIP, the more accurate area estimation we can make. However,
it also requires faster adjustment rates (larger β+ and smaller
β−) to guarantee that cells can converge to their target areas
within the reduced number of adjustment iterations. As will
be discussed in Section V-B, a too fast adjustment rate can be
harmful to the placement convergence and quality. Therefore,
in the proposed flow, we choose to start the dynamic area
adjustment from the beginning of the FIP with relatively slow
adjustment rates β+ = 1.1 and β− = 0.95.

C. Fully Parallelizable Direct Legalization
Our direct legalization (DL) takes a rough-legal FIP and

produces a legal solution by solving the Formulation (3a) –
(3d). The idea is partially similar to the clustering algorithms
in [11], [27], but we are aiming at a legal placement directly.
Besides, the cell displacement is explicitly considered in our
formulation. Compared to traditional greedy methods, our
method can explore a significantly larger solution space by
exploiting the strength of parallelism.

For the simplicity, we will use “slice” to denote “CLB slice”
in this section.

1) A College Admission Analogy: The proposed DL algo-
rithm is inspired by the College Admission Problem [28]. One
can think that each slice is a “college”, each cell is a “student”,
and cells sharing common nets are “friends”. Then, DL can be
regarded as a process of colleges admitting students. By using
this analogy, the DL process is fully parallelizable in nature in
a sense that all colleges can make decisions simultaneously.
Our DL formulation, however, is more complicated than the
original college admission problem for the following two
reasons: 1) a student (cell) rates a college (slice) not only
based on the college (slice) itself, but also depending on
the decision making of its friends (connected cells); 2) some
students (cells) cannot be in the same college (slice) for the
FPGA architectural legality.

2) The Node-Centric Algorithm: The key idea of our DL
algorithm is that each slice finds the cluster of cells that
fits it best, then offers this cluster to all the cells involved.
“Admission” happens when all the cells in this cluster accept
this “offer”. The process of sending and accepting/rejecting
“offers” between slices and cells is iteratively performed until
no potential “admission” could happen anymore. Different
slices here can create cluster candidates and make their own
decisions independently. Moreover, a cluster can be simul-
taneously created and considered by multiple slices, which

Begin of an iteration

i ≥ I and pq.top()
is accepted by
all cells in it?

Remove invalid
candidates in pq

Remove invalid cells in nbr

det = pq.top();
pq = ∅;

scl = {det}

|nbr| < NNBRmin

and d < D?

d′ = min(d + ∆d,D);
Add cells within

range (d, d′] into nbr ;
d = d′

scl = all candidates in pq

Add each valid new
candidate i ∪ j,∀i ∈
nbr,∀j ∈ scl, into pq

scl = new candidates in pq

i =

{
0, if pq.top() changes

i + 1, otherwise

Broadcast pq.top()
to cells in it

End of an iteration

Yes No

Yes No

Fig. 7: The node-centric DL algorithm flow at each compu-
tation node (slice).

implicitly explores the solution space of placement together
with packing. This elegant property overcomes the drawback
of all existing methods, where placement and packing cannot
be considered at the same time.

In our DL algorithm, the computation is mainly centered
at each slice. Thus, we call each slice as a computation node
and each computation node can run in parallel against each
other.

The node-centric DL algorithm flow at each computation
node is shown in Fig. 7. Each computation node maintains
a set of cells that have been determined in the slice (det), a
priority queue of cluster candidates (pq), a set of neighbor
cells (nbr), and a list of seed clusters (scl) for new candidate
generation. The pq stores the K best clusters found so far
at each computation node and we use K = 10. Clusters are
created by adding cells in nbr into seed clusters in scl in our
algorithm. Besides, a variable i is also maintained by each
computation node to record the number of iterations since the
last change of the best candidate in pq. We will use pq.top()
to denote the best candidate in a pq. Before the DL starts, for
each computation node, we initialize i = 0, det = ∅, pq = ∅,
nbr as the set of cells within a predefined distance d (default
is 1) to the slice, and scl to contain an empty cluster without
any cells.

In every DL iteration, as shown in Fig. 7, each computation
node first checks if its pq.top() (the best candidate in pq) can
be committed into the slice. The pq.top() will be committed



only if it has been stable for a long enough time (i ≥ I) and
it has been accepted by all the cells in it. I is set to 3 in
our algorithm to prevent committing premature candidates.
Once the pq.top() is valid to commit, we will update det
as pq.top() and reset pq. To guarantee that all subsequent
candidates contain the set of determined cells det, scl is set
to only have det after each pq.top() committing.

If the pq.top() is not yet ready to commit, invalid candidates
and cells will be removed from pq and nbr, respectively.
A cell can become invalid if it has been added to another
slice or it is no longer architecturally compatible with det.
A cluster becomes invalid if one or more cells in it are
invalid. After that, if there are too few available cells in nbr
(|nbr| < NNBRmin), the current maximum cell displacement
constraint d will be relaxed by ∆d, and more neighbor cells
will be added to guarantee the scope of solution space we can
explore. Besides, we will also copy all candidates in pq to scl
to guarantee that they will be considered by these newly added
neighbor cells. To honor the ultimate maximum displacement
constraint D, we will stop increasing d when it reaches D.
NNBRmin, ∆d, and D are set to 10, 1, and 12, respectively,
in our algorithm.

To create new cluster candidates, we add each cell in nbr
into each cluster in scl. Those valid new candidates will be
added into pq. Meanwhile, we also store them in scl for the
candidate generation in the next DL iteration. After that, i
will be increased by 1 if pq.top() does not change, otherwise,
we reset it to 0.

Finally, the computation node broadcasts its pq.top() to the
involved cells and let each of them make a decision. The
decisions of these cells will determine if this pq.top() can be
committed in the next DL iteration.

After all computation nodes finish their broadcasting, a
cell may receive multiple “offers” from a set of different
slices S. In such a case, the cell will select the slice s ∈ S
with the highest score improvement ∆SCORE(s). The score
improvement of a slice s is defined as

∆SCORE(s) =

SCORE(pq.top() of s, s)− SCORE(det of s, s),
(8)

where SCORE(c, s) represents the score of cluster c in slice s,
and it will be given in Section IV-C4. Intuitively, ∆SCORE(s)
is the amount of score improvement by committing the
pq.top() in slice s.

Algorithm 1 summarizes the whole fully parallelizable DL
process. All computation nodes are initialized in parallel in
line 1 – 7. In each DL iteration, the node-centric algorithm
presented in Fig. 7 is executed by each slice individually
in line 9 – 11. After that, each cell receives “offers” from
slices with pq.top() containing it, and it picks the one with
the highest score improvement ∆SCORE (Eq. (8)) and inform
its acceptance to the selected slice in line 12 – 16. The loop
from line 8 to line 17 is repeated until no more valid candidate
exists.

3) Convergence Requirement: In general, a valid pq.top()
may never be accepted by all the cells in it. In such a case, our
DL algorithm will fall into an infinite loop. To guarantee the

Algorithm 1 Fully Parallelizable Direct Legalization

Input: A rough-legal placement, the set of cells C, the set
of slice (computation node) S, and the initial maximum
displacement constraint d.

Output: A legal placement.
1: parallel for each s ∈ S do
2: s.i← 0;
3: s.det← ∅;
4: s.pq← ∅;
5: s.nbr← {c ∈ C | dist(c, s) ≤ d};
6: s.scl← {an empty cluster};
7: end parallel for
8: while exists valid pq.top() for s ∈ S do
9: parallel for each s ∈ S do

10: Run the node-centric algorithm shown in Fig. 7;
11: end parallel for
12: parallel for each c ∈ C do
13: Among {s ∈ S | c ∈ s.pq.top()}, pick s? that
14: has the highest ∆SCORE(s?) defined in Eq. (8)
15: and inform s? that c accepts its pq.top();
16: end parallel for
17: end while

convergence of the algorithm, an extra requirement is imposed
as stated in Lemma 1.

Lemma 1. Suppose s1 and s2 are two different computation
nodes (slices). If ∆SCORE(s1) 6= ∆SCORE(s2) holds for any
choice of s1 and s2 in the same DL iteration, the convergence
of the proposed DL algorithm is guaranteed.

Lemma 1 basically requires a tie-breaking mechanism for
the case that multiple computation nodes offer the same score
improvement (Eq. (8)) to a set of cells. In our implementation,
a tie is broken based on the unique identifier of each compu-
tation node, since a cell can receive at most one “offer” from
a computation node in each iteration.

4) Score Function: Since our DL explores the solution
spaces of placement and packing simultaneously, the score
function needs to capture both placement- and packing-related
metrics. Given a slice s and a cluster c, the score of c in s is
defined as follows:

SCORE(c, s) =∑
e∈Net(c)

InternalPins(e, c)− 1

TotalPins(e)− 1
− λ ·∆HPWL(c, s), (9)

where Net(c) denotes the set of nets that have at least one
cell in c, TotalPins(e) denotes the total pin count of net
e, InternalPins(e, c) represents the number of pins of net
e in c, and ∆HPWL(c, s) represents the HPWL increase
of moving cells in c from their FIP locations to s. λ is a
positive weighting parameter, which is empirically set to 0.02
in our algorithm. The first term defines the clustering score
φ(c) in Eq. (3a), and it here grants a higher score to clusters
that absorb more external nets as internal ones, which can
effectively reduce routing demands and improve routability.
The second term gives a higher preference to candidates that
lead to a large wirelength reduction.



5) Parallelization Scheme: As illustrated in Algorithm 1,
our DL algorithm is massively parallelizable. Like colleges
independently making decisions in the analogy of college ad-
mission (Section IV-C1), different computation nodes (slices)
can execute the flow illustrated in Fig. 7 perfectly in parallel
in each DL iteration (Algorithm 1 line 9 – 11). Moreover,
cells can also process the results generated by slices and send
back their decisions individually (Algorithm 1 line 12 – 16).

Since the number of slices and cells in a modern FPGA is
typically at the scale of 104 or more (e.g., our target FPGA
contains 67K slices), a fine-grained parallelization with even
tens of threads is potentially viable in our DL algorithm.
Our experiments in Section V-C demonstrates the near-linear
runtime scalability of our DL algorithm with respect to the
number of threads. This extreme parallelizability can further
facilitate efficient implementations of our DL algorithm on
hardware accelerators, like FPGAs and GPUs.

Another strong property of our DL algorithm is serial
equivalency. Serial equivalency is a property to guarantee
that a parallel algorithm always produces exactly the same
solution as its serial version does. That is, our DL algorithm
guarantees to produce the same solution, regardless of the
number of threads used. Therefore, we can enable as much as
available parallel computational resources without sacrificing
the quality of results.

6) Post-DL Exception Handling: Although the conver-
gence of our algorithm can be guaranteed by Lemma 1, after
the regular DL process described in Algorithm 1, a small
portion (typically < 1%) of cells may still not be able to
find legal positions within a given maximum displacement
constraint D. To legalize these remaining cells, one can, of
course, keep relaxing D until a legal solution is reached, like
a Tetris-based legalizer. However, this approach can result
in a huge displacement. Instead of Tetris-based approaches,
we choose to rip up some already determined clusters and
reallocate these ripped cells together with those originally
illegal ones to produce a legal solution. Since our FIP is nearly
legal, this method is likely able to find a legal solution with
very little placement perturbation.

One of the key question here is which cluster to break. For
an illegal cell v and a slice s with its determined cluster c,
we first define the score of breaking c in s for v as

SCOREripup(v, s, c) =

− λ1 ·∆HPWL(v, s)− λ2 · SCORE(c, s)

− λ3 · Area(c),

(10)

where ∆HPWL(v, s) denotes the HPWL increase of moving
v to s, SCORE(c, s) denotes the score of c in s as defined in
Eq. (9), and Area(c) represents the total cell area (from FIP)
in c. λ1, λ2, and λ3 are three positive weighting parameters.
In our experiments, we empirically set them to 0.02, 1.0, and
4.0, respectively. Intuitively, we prefer to move v to a low-
score slice with little wirelength increase. The Area(c) term is
introduced to evaluate if the ripped cells are easy to legalize.
If c has a large area, it either contains many cells or the cells
it contains are hard to pack (recall Eq. (6) and Eq. (7)). For
both cases, we tend to not break it.

Algorithm 2 Post-DL Exception Handling

Input: A post-DL placement with the set of illegal cells C′,
the set of all cells C, the set of all slices S, and the
maximum displacement constraint D.

Output: A legal placement.
1: for each c ∈ C′ do
2: D(c) ← D;
3: while Legalize(c,D(c)) is fail do
4: D(c) ← D(c) + 1;
5: end while
6: end for
7:
8: function Legalize(c, D)
9: ls(c) ← {s ∈ S | dist(c, s) ≤ D};

10: Sort slices in ls(c) by their SCOREripup defined in
11: Eq. (10) in descending order;
12: for each s ∈ ls(c) do
13: if RipUpAndLegalize(s, c,D) is success then
14: return success;
15: end if
16: end for
17: return fail;
18: end function
19:
20: function RipUpAndLegalize(s, c,D)
21: lv ← {v ∈ C | v ∈ s.det};
22: s.det← {c};
23: for each v ∈ lv do
24: ls(v) ← {s ∈ S | dist(v, s) ≤ D and s.det ∪ v
25: is a legal cluster};
26: if ls(v) is ∅ then
27: Remove c from s.det;
28: Put all v ∈ lv back to s.det;
29: return fail;
30: else
31: Pick s? ∈ ls(v) with the highest
32: SCORE(s?.det∪ v, s?) − SCORE(s?.det, s?);
33: s?.det← s?.det ∪ v;
34: end if
35: end for
36: return success;
37: end function

Algorithm 2 summarizes our post-DL exception handling
technique that legalizes illegal cells after the regular DL
process (Algorithm 1). In the main loop (line 1 – 6), each
illegal cell c is legalized with the maximum displacement
constraint D(c) using function Legalize(c,D(c)). For each
c, we set the initial displacement constraint as D (line 2), and
incrementally relax it (line 4) if a legal solution cannot be
found. To legalize a illegal cell c with displacement constraint
D using Legalize(c,D) (line 8 – 18), we first collect the
set of slices ls(c) that are within distance D w.r.t the location
of c in FIP (line 9). Then we sort all slices in ls(c) by their
SCOREripup defined in Eq. (10) in descending order (line
10 – 11). After that we try to ripup s ∈ ls(c) one by one
and legalize c using function RipUpAndLegalize(s, c,D)



until the legalization successes (line 12 – 16). If c cannot be
legalized by breaking any slice in ls(c), Legalize(c,D) will
return fail (line 17) and the displacement constraint will be
relaxed in the main loop (line 3 – 5).

The details of function RipUpAndLegalize(s, c,D) are
given in line 20 – 37. The goal of this function is to break
s.det and legalize c as well as the cells in s.det under the
displacement constraint D. We first rip up s.det and put c
alone into it (line 22). Then, the cells that are originally in
s.det are legalized sequentially in the loop from line 23 to line
35. For each such a cell v, we first collect the set of slices
(ls(v)) that are within distance D (w.r.t the location of v in
FIP) and have their det compatible with with v (line 24 – 25).
If no such slice exists, we discard all the changes that have
been made in this function call (line 27 – 28) and return fail
(line 29). Otherwise, among all candidate slices (ls(v)), we
pick the one with the highest score gain SCORE(s?.det ∪ v,
s?) − SCORE(s?.det, s?) and put v into it (line 31 – 33). The
function call successes only when all cells that are originally
in s.det can find legal positions within displacement D (line
36).

7) Extension to Clock-Aware Placement: Clock networks
in modern FPGAs can impose extra layout constraints during
placement stage. The most common one is “clock region
constraint” [29], which only allows a limited number of clock
nets occupying each clock region (each clock region is a
predefined rectangular region in the layout). Some previous
works [15], [30] honor this constraint by finding a legal clock-
to-clock region assignment and restricting clock sinks (e.g.,
Flip-Flops, DSPs, and RAMs) to follow it.

Here we assume such a legal clock-to-clock region assign-
ment is given, that is, we know which cell can be placed into
which slice. Then, to honor the clock region constraint, we
only need to perform an extra checking step to reject cell-to-
slice assignments that violate the given clock assignment in
our DL algorithm.

V. EXPERIMENTAL RESULTS

We implemented the proposed framework in C++ based on
UTPlaceF [12] and performed the experiments on a Linux
machine running with Intel Core i9-7900X CPUs (3.30 GHz,
10 cores, and 13.75 MB L3 cache) and 128 GB RAM.
OpenMP 4.0 [31] is used to support multi-threading. The
benchmark suite released by Xilinx for ISPD 2016 FPGA
placement contest [17] is used to validate the the effectiveness
of the proposed approaches. All the routings are conducted by
Xilinx Vivado v2015.4 [32]. The characteristics of ISPD 2016
benchmark suite are listed in Table II.

To study the impact of clock constraints, we also inte-
grate the proposed approaches to a clock-aware placer UT-
PlaceF 2.0 [30], and perform experiments on the benchmark
suite released by Xilinx for ISPD 2017 FPGA clock-aware
placement contest [17]. The routings of this benchmark suite
are conducted by Xilinx Vivado v2016.4. The characteristics
of ISPD 2017 benchmark suite are listed in Table III.

TABLE II: ISPD 2016 Contest Benchmarks Statistics
Benchmark #LUT #FF #RAM #DSP #Ctrl Set
FPGA-01 50K 55K 0 0 12
FPGA-02 100K 66K 100 100 121
FPGA-03 250K 170K 600 500 1281
FPGA-04 250K 172K 600 500 1281
FPGA-05 250K 174K 600 500 1281
FPGA-06 350K 352K 1000 600 2541
FPGA-07 350K 355K 1000 600 2541
FPGA-08 500K 216K 600 500 1281
FPGA-09 500K 366K 1000 600 2541
FPGA-10 350K 600K 1000 600 2541
FPGA-11 480K 363K 1000 400 2091
FPGA-12 500K 602K 600 500 1281
Resources 538K 1075K 1728 768 -

TABLE III: ISPD 2017 Contest Benchmarks Statistics
Benchmark #LUT #FF #RAM #DSP #Clocks

CLK-FPGA01 211K 324K 164 75 32
CLK-FPGA02 230K 280K 236 112 35
CLK-FPGA03 410K 481K 850 395 57
CLK-FPGA04 309K 372K 467 224 44
CLK-FPGA05 393K 469K 798 150 56
CLK-FPGA06 425K 511K 872 420 58
CLK-FPGA07 254K 309K 313 149 38
CLK-FPGA08 212K 257K 161 75 32
CLK-FPGA09 231K 358K 236 112 35
CLK-FPGA10 327K 506K 542 255 47
CLK-FPGA11 300K 468K 454 224 44
CLK-FPGA12 277K 430K 389 187 41
CLK-FPGA13 339K 405K 570 262 47

Resources 538K 1075K 1728 768 -

A. Effectiveness Validation of Proposed Techniques

Table IV domonstrates the effectiveness of the proposed
dynamic area adjustment (DAA) and direct legalization
(DL) techniques. Here we compare four different placement
methodologies, as listed in the four columns. Column “UT-
PlaceF” represents the original UTPlaceF [12] flow. Column
“UTPlaceF + DAA” applys DAA on top of the original
UTPlaceF. Column “Proposed” employs both DAA and the
proposed DL by replacing the packing, CLB-level placement,
and legalization subroutines in “UTPlaceF + DAA” flow with
the proposed DL. To further demonstrate the effectiveness
of the proposed DL, we also implemented a greedy Tetris-
based direct legalization (greedy DL) for comparison. This
greedy DL adopts the same score function Eq. (9) used
by the proposed DL, and it legalizes one cell at a time to
maximize the score improvement defined in Eq. (8). The
results of substituting the proposed DL in “Proposed” with
this greedy DL are shown in column “DAA + Greedy DL”.
Metrics “WL” and “RT” represent the routed wirelength and
runtime, while “WLR” and “RTR” represent the wirelength
and runtime ratios normalized to the “Proposed” column. Note
that these four flows share the same underlying global and
detailed placement engines, so that noises from parts that are
irrelevant to this work can be completely decoupled in this
comparison.

It is worthwhile to mention that, the proposed DL should
not be applied without DAA, since this can results in very
suboptimal or even illegal solutions. In the proposed DL,
all cells simultaneously seek to legalize themselves. Without
DAA, however, the FIP solution can be considerably far away
from a truly legal placement, and in this case, a significant



TABLE IV: Routed Wirelength (in 103) and Runtime (in Seconds) Comparison with UTPlaceF† [12]

Designs UTPlaceF† [12] UTPlaceF† + DAA DAA + Greedy DL Proposed (DAA + DL)
WL RT WLR RTR WL RT WLR RTR WL RT WLR RTR WL RT WLR RTR

FPGA-01 346 70 1.016 1.15 342 70 1.005 1.15 371 55 1.092 0.90 340 61 1.000 1.00
FPGA-02 652 111 0.999 0.97 643 109 0.985 0.96 691 102 1.059 0.89 653 114 1.000 1.00
FPGA-03 3173 318 1.011 0.95 3107 331 0.990 0.99 3283 309 1.046 0.93 3139 333 1.000 1.00
FPGA-04 5440 399 1.020 1.01 5250 411 0.985 1.04 5479 362 1.028 0.92 5331 394 1.000 1.00
FPGA-05 9775 432 0.973 1.00 9687 449 0.964 1.03 10162 396 1.012 0.91 10045 434 1.000 1.00
FPGA-06 6505 718 1.121 1.24 6173 803 1.064 1.39 6185 541 1.066 0.94 5801 578 1.000 1.00
FPGA-07 9876 792 1.056 1.20 9718 849 1.039 1.28 9754 626 1.043 0.95 9356 662 1.000 1.00
FPGA-08 7735 641 0.932 0.92 7942 690 0.957 0.99 8451 650 1.018 0.94 8298 695 1.000 1.00
FPGA-09 12062 1409 1.037 1.59 11904 1385 1.023 1.56 12229 830 1.051 0.94 11633 887 1.000 1.00
FPGA-10 8178 1783 1.295 2.33 7935 1782 1.256 2.33 7399 730 1.171 0.95 6317 766 1.000 1.00
FPGA-11 9966 1001 0.951 1.12 10386 1023 0.991 1.15 10833 848 1.034 0.95 10476 890 1.000 1.00
FPGA-12 7635 1343 1.117 1.36 7557 1551 1.106 1.57 7534 914 1.102 0.93 6835 988 1.000 1.00

Norm. - - 1.044 1.24 - - 1.030 1.29 - - 1.060 0.93 - - 1.000 1.00
† : This UTPlaceF version is fine tuned for even better routed wirelength and runtime compared with the original publication [12].

portion of cells can fail to find nearby legal positions. There-
fore, we always employ the proposed DL together with the
DAA technique in our experiments.

In this experiment, we enable 16 threads for our DL
algorithm due to its parallel nature, and all other parts
(global/detailed placement) are single-threaded. While the
UTPlaceF is universally executed with a single thread for
the following two reasons: 1) the packing and legalization
algorithms in UTPlaceF are inherently sequential and hard to
be parallelized without quality degradation or extra threading
communication overhead; 2) the packing and legalization
in UTPlaceF only take about 15% of the total runtime on
average, therefore, the overall performance gain would be still
limited even if they have been carefully parallelized.

We first compare columns “UTPlaceF” and “UTPlaceF +
DAA”, where the only difference is whether or not DAA is
applied. On average, “UTPlaceF + DAA” achieves 1.4% better
routed wirelength with only 5% runtime overhead compared
with “UTPlaceF”. The reason is that, with DAA applied,
the FIP solution can be considerably closer to a truly legal
solution due to its packing effect consideration. This can be
further proved by the experiemental results shown in Table V,
which we will discuss in details later in this section.

We then compare columns “UTPlaceF + DAA” and “DAA
+ Greedy DL” with “Proposed” to demonstrate the effective-
ness of the proposed DL. These three methodologies share
the same FIP solutions and only differ by their packing and
legalization steps. As can be seen, on average, “Proposed”
outperforms “UTPlaceF + DAA” and “DAA + Greedy” by
3.0% and 6.0%, respectively, in routed wirelength. It should
be noted that “Proposed” outperforms “DAA + Greedy DL”
on all twelve benchmarks in routed wirelength with only 7%
longer runtime. Therefore, compared with the Pack-Place-
Legalize methodology in “UTPlaceF + DAA” and the greedy
DL, the proposed DL algorithm can effectively explores a
larger solution space and achieves better solution quality.

By comparing columns “Proposed” and “UTPlaceF”, we
can see that, with both DAA and DL employed, the proposed
flow outperforms the original UTPlaceF by 4.4% in routed
wirelength, while runs 1.24× faster. It is worthwhile to
mention that, among all the designs, FPGA-10 contains the
largest number of control sets and flip-flops, which make

it severely difficult to pack and legalize. On this particular
design, our approach outperforms UTPlaceF by 29.5% in
routed wirelength. Besides, our approach also consistently
excel on other control set intensive designs, like FPGA-06,
FPGA-07, and FPGA-09. Thus, our approach is especially
effective for hard-to-pack designs.

Another notable merit of our approach is that the cor-
relation between FIPs and post-legalization solutions can
be significantly improved. This property is appealing in a
sense that metrics, like wirelength, timing, and routability,
optimized in FIPs can be greatly preserved in legal solutions.
Table V shows the average and maximum cell displacements
between the FIPs and the post-legalization/DL solutions by
using the four different methodologies listed in Table IV.
As can be seen, the original UTPlaceF introduces huge cell
displacements with average and maximum values of 21.4
and 162.5, respectively. DAA technique alone can effectively
reduce them down to 11.7 and 135.0 in “UTPlaceF + DAA”.
In “DAA + Greedy DL”, by applying the greedy DL in-
stead of the packing-based methodology, the average and
maximum displacements can be further reduced to 1.5 and
57.4, respectively. For all twelve benchmarks, the proposed
methodology with DAA and the proposed DL together can
achieve maximum displacements that are less than 12.0, which
is the predefined constraint in our DL algorithm. Meanwhile,
the average displacements are all in the range from 1.0 to
1.5. As expected, our DAA and DL techniques can greatly
help to preserve the FIP solution even after a legal solution
is obtained.

TABLE V: Displacement Comparison with UTPlaceF

Designs UTPlaceF [12] UTPlaceF + DAA DAA + Greedy DL Proposed
Avg. Max. Avg. Max. Avg. Max. Avg. Max.

FPGA-01 5.7 42.6 5.6 26.1 1.2 9.2 1.0 11.4
FPGA-02 5.2 305.0 5.9 191.1 1.1 11.3 1.0 11.8
FPGA-03 12.2 146.9 7.7 90.9 1.2 23.8 1.0 11.5
FPGA-04 20.3 124.3 7.8 128.0 1.3 64.3 1.1 11.5
FPGA-05 12.1 185.1 10.5 126.7 1.2 47.8 1.1 11.8
FPGA-06 60.4 187.8 17.0 209.0 1.7 52.7 1.3 11.8
FPGA-07 21.1 232.6 13.9 166.8 1.7 92.5 1.3 11.5
FPGA-08 11.8 95.4 6.3 107.9 1.1 13.3 1.0 10.9
FPGA-09 13.0 150.6 10.3 144.7 1.6 86.8 1.2 11.7
FPGA-10 25.5 164.7 26.2 127.4 2.6 166.7 1.4 11.7
FPGA-11 40.8 138.1 15.6 124.8 1.4 46.4 1.0 11.5
FPGA-12 28.7 177.6 13.2 176.6 1.5 74.1 1.1 11.5

Norm. 21.4 162.5 11.7 135.0 1.5 57.4 1.2 11.6



Figure 8 visualizes the distributions of cell displacement
between the FIPs and the post-legalization/DL solutions based
on design FPGA-03. Compared with UTPlaceF, most cells in
the proposed methodology are much closer to their original
locations in the FIP. However, tremendously large displace-
ments can be observed in UTPlaceF.
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Fig. 8: The cell displacement distributions of UTPlaceF,
UTPlaceF + DAA, DAA + Greedy DL, and the proposed flow
(DAA + DL) based on design FPGA-03. The displacement
of a cell is defined as the Manhattan distance between
its locations in the FIP and the post-legalization/DL place-
ment. The average/maximum displacements are 12.2/146.9,
7.7/90.9, 1.2/23.8, and 1.0/11.5 in UTPlaceF, UTPlaceF +
DAA, DAA + Greedy DL, and the proposed flow, respectively.

Table VI shows the impact of DAA on HPWL and the max-
imum LUT and FF resource utilization (Eq. (4)) in FIP stage.
On average, DAA reduces the maximum LUT/FF resource
utilization from 1.82 to 1.17, while increases the wirelength by
2.5%. Note that, counter-intuitively, this wirelength increase
is not a quality degradation, but an improvement in the sense
that FIP solutions are getting closer to truly legal placements.
This can be better illustrated by Fig. 9. It shows the HPWL
after the flat initial placement (FIP), legalization/DL (LG),
and detailed placement (DP) stages in the four previously
described flows. In spite of the larger HPWL after FIP,
flows with DAA applied finally achieve better solutions with
smoother wirelength convergence. Besides, we can also see
that the proposed DL technique largely preserves the FIP
solution in the LG stage, and this is the main reason that
the proposed flow can significantly outperform the other three
methodologies.

B. Parameter Choosing in Dynamic Area Adjustment

A proper parameter setting in our dynamic area adjustment
(DAA) algorithm is important to the overall solution quality.
In this section, we discuss how several key parameters,
including β+, β−, and Rmax in Eq. (5), should be set.

Figure 10 visualizes the normalized wirelength under dif-
ferent β+ and β− values based on design FPGA-01. β+ > 1
and β− < 1 control the rates of area inflation and shrinking,
respectively, in DAA. The top-left (β+ ≈ 1 and β− ≈ 1)
and bottom-right (β+ � 1 and β− � 1) regions in Fig. 10

TABLE VI: HPWL and the Maximum LUT and FF Utilizations
(Eq. (4)) w/ and w/o DAA after FIP

Designs Norm. HPWL Max. LUT & FF Util.
w/o DAA w/ DAA w/o DAA w/ DAA

FPGA-01 1.093 1.000 0.87 1.00
FPGA-02 0.992 1.000 1.08 1.11
FPGA-03 0.982 1.000 1.46 1.12
FPGA-04 0.966 1.000 1.59 1.11
FPGA-05 0.945 1.000 1.61 1.09
FPGA-06 0.970 1.000 2.04 1.12
FPGA-07 0.932 1.000 2.10 1.12
FPGA-08 0.907 1.000 1.88 1.18
FPGA-09 0.990 1.000 1.96 1.28
FPGA-10 0.993 1.000 2.76 1.28
FPGA-11 0.941 1.000 1.99 1.27
FPGA-12 0.989 1.000 2.49 1.40

Norm. 0.975 1.000 1.82 1.17
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Fig. 9: The normalized HPWL after the flat initial placement
(FIP), legalization/DL (LG), and detailed placement (DP) in
the four methodologies listed in Table IV. All HPWL values
are normalized to the post-DP HPWL of the proposed flow.
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Fig. 10: Normalized HPWL under different β+ and β−
in Eq. (5) based on design FPGA-01. All wirelengths are
normalized to the solution without applying dynamic area
adjustment.

correspond to slow and fast area adjustment processes, respec-
tively. As can be seen, the optimal wirelength is achieved at a
relatively slow area adjustment rate, while the wirelength gets
worse when cell areas are adjusted too fast. This is because
that, for a very sharp area change, the placer typically needs
several iterations to “heal” the wirelength. That is, a too fast
area adjustment can be significantly harmful to the placement
convergence. However, a too slow area adjustment should
also be avoided in the sense that all the cell should reach



their “target areas” reasonably earlier than the FIP stops to
leave enough time to the placement for stabilizing. In our
framework, we empirically set β+ = 1.1 and β− = 0.95, and
we observe that the final solution quality is not very sensitive
to settings around these two values.
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Fig. 11: Normalized HPWL and routed wirelengths under
different Rmax in Eq. (5) based on design FPGA-05. All
wirelengths are normalized to the solution with Rmax = 0
(i.e. area shrinking is disallowed).

Figure 11 shows the normalized HPWL and routed wire-
length under different Rmax values based on design FPGA-
05. DAA only shrinks cells in regions with routing utilization
less than Rmax to prevent from overfilling routing congested
regions. We can see that, as Rmax increases, HPWL decreases
steadily due to the more aggressive cell shrinking. However,
the routability get worse at the same time, and as a result, the
routed wirelength reduction gradually saturates and starts to
increase until a unroutable solution is reached (not shown in
the figure). Therefore, a proper Rmax is crucial to produce
high-quality as well as routing-friendly solutions. In our
framework, we empirically set Rmax = 0.65.

C. Runtime Scaling of the Direct Legalization

Figure 12 shows the runtime scaling of our DL algorithm
for different design sizes under 1, 2, 4, 8, and 16 threads. It
can be seen that, with a fixed number of available threads,
the algorithm scales linearly with respect to the design size.
On the other hand, given a design, its runtime also decreases
nearly linearly as the number of threads increases (except
the 16-thread case with hyper-threading). On average, 1.65×,
3.15×, 6.19×, and 8.68× speedups can be achieved with 2,
4, 8, and 16 threads, respectively, compared with the single-
thread execution. Note that the sacling starts to saturate from 8
threads to 16 threads. This is because a CPU core can lanuch
2 hyper-threads that share the same execution resources and
cannot be truly parallelized. Considering there are only 10
cores in our machine, at least 6 threads will not be running
at their maximum speed in the case of 16 threads.

D. Comparison with Other State-of-the-Art Placers

To further demonstrate the effectiveness of our approach,
we also compare our result with other state-of-the-art aca-
demic placers, including RippleFPGA [14], GPlace [16] as
well as the top-3 winners of ISPD 2016 contest, on ISPD
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Fig. 12: Runtime scaling of the direct legalization.

2016 benchmark suite. The comparisons of routed wirelength
and runtime are presented in Table VII.

As the experiment setup in Section V-A, we enable 16
threads only for our DL algorithm and keep all other parts
single-threaded. All other placers are executed using a single
thread. Although other placers can also gain some perfor-
mance by parallelizing their packing and legalization algo-
rithms, the improvement might be limited. This is because
most of their packing and legalization algorithms are not
the runtime bottleneck, just like in UTPlaceF. For example,
RippleFPGA only takes about 5% of the total runtime on
packing and legalization [14].

Despite of the different global/detailed placement engines
and the execution machines, our approach still shows the best
overall routed wirelength. On average, our approach outper-
forms the three contest winners, GPlace, and RippleFPGA by
8.0%, 14.0%, 44.4%, 25.4%, and 4.1%, respectively. Again,
our approach especially excels in control set intensive designs,
like FPGA-06, FPGA-07, FPGA-09, and FPGA-10. which
further evidences the effectiveness of our approach on hard-
to-pack designs. As for the runtime, our approach is 3.96×,
4.90×, and 5.84× faster than the three contest winners. While
comparing with GPlace and RippleFPGA, our approach runs
1.14× and 1.56× slower.

To demonstrate the capability of tackling clock constraint
in the proposed approaches, we also integrate them into a
clock-aware placer UTPlaceF 2.0 [30]. Then, we compare
it with the original UTPlaceF 2.0, the clock-aware version
of RippleFPGA [15], [13] as well as the top-3 winners of
ISPD 2017 contest (the original UTPlaceF 2.0 is also the 1st-
place contest winner), on ISPD 2017 benchmark suite. The
comparisons of routed wirelength and runtime are shown in
Table VIII.

We first compare the original UTPlaceF 2.0 and the
proposed flow, which is the only apple-to-apple compari-
son here that decouples other irrelevant differences (e.g.,
global/detailed placement and clock legalization algorithms).
On average, the proposed approaches achieve 2.8% better
routed wirelength with slightly shorter runtime. Compared
with the results on ISPD 2016 benchmark suite shown in
Table IV, both wirelength and runtime improvements in ISPD



TABLE VII: Routed Wirelength (in 103) and Runtime (in Seconds) Comparison with Other State-of-the-Art Academic Placers on ISPD
2016 Benchmark Suite

Designs 1st Place 2nd Place 3rd Place GPlace [16] RippleFPGA [14] Proposed
WL RT WLR RTR WL RT WLR RTR WL RT WLR RTR WL RT WLR RTR WL RT WLR RTR WL RT WLR RTR

FPGA-01 * * - - 380 118 1.117 1.93 582 97 1.711 1.59 494 30 1.451 0.49 353 31 1.037 0.51 340 61 1.000 1.00
FPGA-02 678 435 1.038 3.82 680 208 1.041 1.82 1047 191 1.603 1.68 903 61 1.383 0.54 645 57 0.989 0.50 653 114 1.000 1.00
FPGA-03 3223 1527 1.027 4.59 3661 1159 1.166 3.48 5029 862 1.602 2.59 3908 289 1.245 0.87 3262 201 1.039 0.60 3139 333 1.000 1.00
FPGA-04 5629 1257 1.056 3.19 6497 1449 1.219 3.68 7247 889 1.359 2.26 6278 280 1.178 0.71 5510 224 1.033 0.57 5331 394 1.000 1.00
FPGA-05 10265 1266 1.022 2.92 † - - - † - - - † - - - 9969 270 0.992 0.62 10045 434 1.000 1.00
FPGA-06 6330 2920 1.091 5.05 7009 4166 1.208 7.21 6823 8613 1.176 14.90 7643 600 1.318 1.04 6180 424 1.065 0.73 5801 578 1.000 1.00
FPGA-07 10237 2703 1.094 4.08 10416 4572 1.113 6.91 10973 9196 1.173 13.89 11255 691 1.203 1.04 9640 493 1.030 0.74 9356 662 1.000 1.00
FPGA-08 8384 2645 1.010 3.81 8986 2942 1.083 4.23 12300 2741 1.482 3.94 9323 734 1.124 1.06 8157 425 0.983 0.61 8298 695 1.000 1.00
FPGA-09 † - - - 13909 5833 1.196 6.58 † - - - 14003 974 1.204 1.10 12305 589 1.058 0.66 11633 887 1.000 1.00
FPGA-10 * * - - * * - - † - - - † - - - 7140 649 1.130 0.85 6317 766 1.000 1.00
FPGA-11 11091 3227 1.059 3.63 11713 7331 1.118 8.24 † - - - 12368 923 1.181 1.04 11023 542 1.052 0.61 10476 890 1.000 1.00
FPGA-12 9022 4539 1.320 4.59 * * - - † - - - † - - - 7363 650 1.077 0.66 6835 988 1.000 1.00

Norm. - - 1.080 3.96 - - 1.140 4.90 - - 1.444 5.84 - - 1.254 0.88 - - 1.041 0.64 - - 1.000 1.00

*: Placement error. †: Unroutable placement.

TABLE VIII: Routed Wirelength (in 103) and Runtime (in Seconds) Comparison with Other State-of-the-Art Academic Placers on ISPD
2017 Benchmark Suite

Designs UTPlaceF 2.0 [30] (1st Place) 2nd Place 3rd Place RippleFPGA [15] [13] Proposed
WL RT WLR RTR WL RT WLR RTR WL RT WLR RTR WL RT WLR RTR WL RT* WLR RTR* WL RT WLR RTR

CLK-FPGA01 2208 422 1.051 0.89 2209 3023 1.052 6.35 2269 354 1.080 0.74 2011 288 0.958 0.61 2098 3524 0.999 - 2101 476 1.000 1.00
CLK-FPGA02 2279 407 1.007 0.90 2274 3153 1.005 6.94 2504 333 1.107 0.73 2168 266 0.958 0.59 2173 3351 0.960 - 2263 454 1.000 1.00
CLK-FPGA03 5353 824 1.033 0.89 6229 4066 1.202 4.37 5803 666 1.120 0.72 5265 583 1.016 0.63 5049 6722 0.974 - 5181 930 1.000 1.00
CLK-FPGA04 3698 564 1.012 0.86 3817 3077 1.045 4.69 4086 464 1.118 0.71 3607 380 0.987 0.58 3710 5101 1.015 - 3654 656 1.000 1.00
CLK-FPGA05 4692 744 1.023 0.88 4995 3631 1.089 4.29 5181 680 1.129 0.80 4660 569 1.016 0.67 4523 6336 0.986 - 4589 846 1.000 1.00
CLK-FPGA06 5589 845 1.040 0.88 5606 3836 1.043 3.98 6217 695 1.157 0.72 5737 591 1.067 0.61 5169 7932 0.962 - 5375 963 1.000 1.00
CLK-FPGA07 2445 670 0.999 1.30 2505 3953 1.023 7.68 2676 410 1.093 0.80 2326 304 0.950 0.59 2380 4071 0.972 - 2448 515 1.000 1.00
CLK-FPGA08 1886 419 1.031 0.96 1990 4395 1.088 10.08 2057 277 1.125 0.64 1778 247 0.972 0.57 1843 3109 1.008 - 1829 436 1.000 1.00
CLK-FPGA09 2597 668 1.016 1.28 2583 5428 1.011 10.38 2814 414 1.101 0.79 2530 327 0.990 0.63 2499 4423 0.978 - 2556 523 1.000 1.00
CLK-FPGA10 4464 772 1.049 0.96 4770 3305 1.121 4.13 4840 516 1.137 0.64 4496 512 1.057 0.64 4294 6569 1.009 - 4255 801 1.000 1.00
CLK-FPGA11 4184 847 1.042 1.25 4208 4341 1.048 6.39 4777 548 1.190 0.81 4190 455 1.044 0.67 4031 6538 1.004 - 4014 679 1.000 1.00
CLK-FPGA12 3369 614 1.036 0.95 3377 4949 1.038 7.65 3740 413 1.150 0.64 3388 409 1.041 0.63 3244 5300 0.997 - 3253 647 1.000 1.00
CLK-FPGA13 3848 929 1.031 1.25 3921 3748 1.051 5.04 4320 548 1.158 0.74 3833 441 1.027 0.59 3818 5639 1.023 - 3731 743 1.000 1.00

Norm. - - 1.028 1.02 - - 1.063 6.31 - - 1.128 0.73 - - 1.006 0.62 - - 0.991 - - - 1.000 1.00

*: [13] only reported the total runtime of placement and routing, so we only list their total runtime (RT) here for reference but do not show the runtime
ratio (RTR).

2017 benchmark suite turn out to be less. This is mainly
because that, in the ISPD 2017 benchmark suite, no severely
unbalanced resource distributions, like shown in Fig. 5, are
observed even without our DAA technique. Hence, the overall
improvement from DAA in this benchmark suite is reduced.

On average, the proposed approach outperforms the top-
3 contest winners and RippleFPGA in routed wirelength by
2.8%, 6.3%, 12.8%, and 0.6%, respectively. It is also 1.02×
and 6.31× faster than the top-2 contest winners, while runs
1.37× and 1.61× slower than the 3rd-place contest winner
and RippleFPGA. Compared with [13], the proposed approach
is 0.9% worse in routed wirelength. However, [13] does not
report their placement runtime, so we cannot quantitativly
compare the runtime. Considering [13] uses a NTUplace [33]-
like non-linear placement engine, we can expect that it runs
substantially slower than our quadratic placement based flow.

On both ISPD 2016 and 2017 benchmark suites, RippleF-
PGA achieves very competitive results compared with our
approaches. It turns out that RippleFPGA adopts a method-
ology that is very similar to us, but there are following two
key differences: 1) RippleFPGA empirically and statically set
cell areas in their flat initial placement, while we dynam-
ically adjust them using the proposed DAA technique; 2)
RippleFPGA legalizes cells in a greedy Tetris-based manner,
while we explore a much larger solution space and legalize
cells using the proposed DL algorithm. As a result, compared

with RippleFPGA, our approach can potentially achieve better
solution quality especially on challenging designs, but with
slower runtime.

E. Runtime Breakdown

The runtime breakdown of our approach based on all
twelve designs in ISPD 2016 benchmark suite is shown
in Figure 13. Again, we enable 16 threads only for DL
and keep all other parts single-threaded. On average, 64.5%
and 18.5% of the total runtime are taken by the quadratic
placement (quadratic programming and rough legalization)
and the detailed placement, respectively. While the proposed
dynamic area adjustment, direct legalization, and post-DL
exception handling techniques consume 2.2%, 12.5%, and
0.7% of the total runtime.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new paradigm for FPGA
placement without explicit packing. The proposed framework
significantly improves the correlation between the early place-
ments and the final legal solutions. To realize the proposed
framework, a dynamic LUT and FF area adjustment technique
and a fully parallelizable direct legalization algorithm are pro-
posed. Our experiments on ISPD 2016 and 2017 benchmark
suites demonstrate the effectiveness of the proposed approach.
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Fig. 13: The runtime breakdown of our approach based on
designs in ISPD 2016 benchmark suite.

In the future, we plan to further improve the resource demand
estimation models and implement the fully parallelizable
direct legalization algorithm on GPU/FPGA platforms. As
this is the first work to perform FPGA placement without
explicit packing, we expect more research to be done to
further improve the quality of results.
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